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Outline

• Problem: Why AdamW dominates pretraining until recently despite numerous
claims of 1.4 to 2× speedup from alternatives?

• TL;DR: With fair tuning across multiple scales, fixing data budget:
• Scalar-based optimizers (Nesterov AdamW, Mars, Cautious) reach no larger than

1.1× speedup over AdamW.
• Matrix-based optimizers (Muon, Soap, Kron, Scion) can reach up to 1.4× speedup

over AdamW on small models (<0.5B) but the speedup decreases to 1.1× at 1.2B.
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Background: AdamW

AdamW was the default optimizer for almost all deep learning models until recently. It
operates at a scalar level, updating each scalar in parallel using the historical gradient
of that scalar.

Algorithm 1 AdamW

State: 𝑚, 𝑣

𝑚𝑡 = 𝛽1 𝑚𝑡−1 + (1 − 𝛽1) 𝑔𝑡,
𝑣𝑡 = 𝛽2 𝑣𝑡−1 + (1 − 𝛽2) 𝑔2

𝑡 ,

𝑚̂𝑡 = 𝑚𝑡
1 − 𝛽𝑡

1
, ̂𝑣𝑡 = 𝑣𝑡

1 − 𝛽𝑡
2

,

𝑤𝑡+1 = 𝑤𝑡 − 𝜂 𝑚̂𝑡

√ ̂𝑣𝑡 + 𝜖
− 𝜂 𝜆 𝑤𝑡.
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Background: AdamW Variants

Despite the empirical success of AdamW, it is not ideal theoretically. People try to
improve it by incorporating insights from acceleration techniques in convex
optimization, such as variance reduction technique including Nesterov Momentum.

Algorithm 2 Nesterov AdamW (NAdamW)

𝑚𝑡 = 𝛽1 𝑚𝑡−1 + (1 − 𝛽1) 𝑔𝑡,
𝑣𝑡 = 𝛽2 𝑣𝑡−1 + (1 − 𝛽2) 𝑔2

𝑡 ,
𝑚̃𝑡 = 𝛽1 𝑚𝑡 + (1 − 𝛽1) 𝑔𝑡,

𝑚̂𝑡 = 𝑚̃𝑡
1 − 𝛽𝑡+1

1
, ̂𝑣𝑡 = 𝑣𝑡

1 − 𝛽𝑡
2

,

𝑤𝑡+1 = 𝑤𝑡 − 𝜂 𝑚̂𝑡

√ ̂𝑣𝑡 + 𝜖
− 𝜂 𝜆 𝑤𝑡.
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Background: Matrix vs scalar preconditioning

A much more aggressive approach is to change the subject of optimization from the
scalar level to the matrix level.

Scalar preconditioning
AdamW, NAdamW, Mars

Matrix preconditioning
Kron, Shampoo, Soap, Muon

Change subject
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Background: Shampoo

Shampoo is among the first opimizers which assume the object 𝑊𝑡 is a matrix instead
of a scalar. However, empirically Shampoo is not a very stable optimizer and requires
careful tuning, high precision, and tricks including grafting to fully work.

Algorithm 3 Shampoo

𝐿𝑡 = 𝛽2 𝐿𝑡−1 + (1 − 𝛽2) 𝐺𝑡𝐺𝑇
𝑡 ,

𝑅𝑡 = 𝛽2 𝑅𝑡−1 + (1 − 𝛽2) 𝐺𝑇
𝑡 𝐺𝑡,

𝐿̂𝑡 = 𝐿𝑡
1 − 𝛽𝑡

2
, 𝑅̂𝑡 = 𝑅𝑡

1 − 𝛽𝑡
2

,

𝑊𝑡+1 = 𝑊𝑡 − 𝜂(𝐿̂𝑡)−1/4𝐺𝑡(𝑅̂𝑡)−1/4 − 𝜂 𝜆 𝑊𝑡.
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Background: Muon

The difficulty of using Shampoo is fully resolved by its successor Muon.

Algorithm 4 Muon

𝑀𝑡 = 𝛽1 𝑀𝑡−1 + (1 − 𝛽1) 𝐺𝑡,
𝑀̃𝑡 = 𝛽1 𝑀𝑡 + (1 − 𝛽1) 𝐺𝑡, (Nesterov)

𝑊𝑡+1 = 𝑊𝑡 − 𝜂NS(5)(𝑀̃𝑡) − 𝜂 𝜆 𝑊𝑡.

Here NS(𝑥) = 𝑥(𝑎𝑥 + 𝑏𝑥𝑇𝑥 + 𝑐(𝑥𝑇𝑥)2) satisfies that

NS(5)(𝑀) ≈ arg max
‖𝑂‖op=1

Tr(𝑂𝑇𝑀). (1)
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Motivation: How good are these optimizers?

While there are an abundance of optimizers claiming a huge speedup over AdamW, the
difference in evaluation protocol lead to vastly different results about their effectiveness.

Figure 1: Figure 1, Mars Figure 2: Figure 1, Moonlight

Key Reason: Optimizers are not evaluated in respectively best practices! 8



Motivation: Tuning learning rate alone leads to 2 × speedups

Works including Sophia, Mars, Cautious
AdamW, e.t.c, claim a 2 × speedup over
AdamW using the learning rate inherited
from GPT-3 recipe. However, this learning
rate is far from optimal and increasing the
learning rate alone can lead to a 2 ×
speedup!
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Motivation: Fixing hyperparameters ≠ fair comparison

Another common practice is to fix the
shared hyperparameters across optimizers
(learning rate, weight decay, e.t.c).
However, even conceptually similar
optimizers may correspond to very different
optimal hyperparameters to achieve the
best performance.
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Methodology overview: Three phases

Let’s redo everything in a dumb way!

Phase I
Fine-grained sweeps

for every hyperparameter
per-optimizer

Phase II
Sweeping

scale-sensitive hypers
for more regimes

Phase III
Scaling laws

extrapolate to 1.2B
for representative optimizers

Fairness principles:
• Tune each optimizer separately
• Compare at end-of-training
• Evaluate across model scales and data-to-model ratios
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Experimental Setup

• Models: 0.1B, 0.3B, 0.5B, 1.2B parameters
• Data: 1–8× Chinchilla-optimal tokens on DCLM-baseline, StarCoder V2 Data,

and ProofPile 2
• Optimizers: AdamW, NAdamW, Lion, Mars, Muon, Soap, Kron, Scion, Cautious,

Adam-Mini, Sophia
• Primary Evaluation: End-of-training C4/EN losses
• Secondary Evaluation: Downstream performance on HellaSwag, ARC, BoolQ,

CommonsenseQA, PIQA, e.t.c
• Phase I: 0.1B 1-8× Chinchilla & (0.3B, 0.5B) 1× Chinchilla
• Phase II: (0.3B, 0.5B) 2-8× Chinchilla
• Phase III: 1.2B 1-8× Chinchilla
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Phase I: Coordinate Descent Sweeps

Stage LR WD min lr Warmup Max Grad Norm Batch Val. Loss

Init 0.008 0.1 0 1000 1 256 3.298
Round 1 0.008 0.1 0 2000 1 256 3.282
Round 2 0.008 0.1 0 2000 1 128 3.263
Best 0.008 0.1 0 2000 2 128 3.263

Table 1: Illustrative coordinate‐descent steps for AdamW on the 130M 1× Chinchilla regime.
Changed hyperparameter values are highlighted in red; We omitted some unchanged
hyperparameters (𝛽1 = 0.9, 𝛽2 = 0.98, 𝜖 = 10−10).

13



Phase I: Coordinate Descent Sweeps Results

Once converged, we obtain a table similar to the following

Table 2: Hyperparameter ablation for AdamW on 130m on 1x Chinchilla Data

𝛽1 𝛽2 𝜖 𝜂 𝑔norm 𝜂𝑚𝑖𝑛 BSZ warmup 𝜆 Loss Link

0.9 0.98 1e-20 0.008 1 0 128 2000 0.1 3.529 0

0.95 – – – – – – – – 3.539 1
0.98 – – – – – – – – 3.882 2

– 0.9 – – – – – – – 3.545 3
– 0.95 – – – – – – – 3.535 4
– – 1e-25 – – – – – – 3.529 5
– – 1e-15 – – – – – – 3.531 6
– – 1e-10 – – – – – – 3.531 7
– – – 0.004 – – – – – 3.550 8
– – – 0.016 – – – – – 3.538 9
– – – 0.032 – – – – – 7.781 10
– – – – 0 – – – – 3.534 11
– – – – 2.0 – – – – 3.534 12
– – – – – – 256 – – 3.611 13
– – – – – – – 500 – 7.452 14
– – – – – – – 1000 – 3.532 15
– – – – – – – 4000 – 3.575 16
– – – – – – – – 0 3.545 17
– – – – – – – – 0.2 3.536 18
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Phase I: Coordinate Descent Sweeps Results

• Settings swept: 130M, 300M, 500M (at 1× Chinchilla) and 130M (at 2, 4, 8×).
• Outcome: For each optimizer and regime, identified a coordinate-wise local

optimum over all hyperparameters.
• Observation 1: Loss is sensitive only to a subset of hyperparameters; many have

negligible effect when perturbed near optimum.
• Observation 2: Among the sensitive ones, most optimal values are stable across

scales.
• Takeaway: Enables narrowing later sweeps to only scaling-sensitive

hyperparameters.
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Phase II: Further Sweeping on Scale-Sensitive Hyperparameters

We retain only scaling-sensitive hyperparameters for Phase II sweeps on additional
regimes: 300M, 500M at 2, 4, 8× Chinchilla.

Optimizer Scaling-sensitive hyperparameters

AdamW learning rate, warmup, weight decay, batch size
NAdamW learning rate, warmup
Muon learning rate
Soap learning rate, warmup, block size

Table 3: Scaling-sensitive hyperparameters carried into Phase II.
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Phase II: Results on models ≤ 0.5B
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Figure 3: Loss and Benchmark Performance of different optimizers across scale.
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Phase II: Results on models ≤ 0.5B
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Figure 4: Speedup of different optimizers across scale.

• Matrix-based optimizers (Muon, Soap, Kron, Scion) consistently outperform
scalar-based counterparts. Speedups over AdamW typically at 1.2–1.4×.

• Scalar variants (NAdamW, Mars, Cautious) are within 1.1× AdamW after fair
tuning. The lift is small yet consistent.

• Lion and Adam-mini show different trends w.r.t model sizes.
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Phase III: Extrapolation

• Fit hyperparameter scaling laws for each scaling-sensitive hyperparameter ℎ:

ℎ(𝑁, 𝐷) = 𝛼𝑁−𝐴𝐷−𝐵 + 𝛽.

• Parameters learned via non-linear least squares on 12 observed (𝑁, 𝐷, ℎ) triples
per optimizer.

• Validation: For AdamW at 1.2B and 1× Chinchilla, predicted hyperparameters are
within 3 × 10−3 final loss of the full-sweep optimum.

• Case studies:
• 1.2B models with AdamW, NAdamW, Muon, Soap at 1–8× Chinchilla.
• 130M/300M at 16× Chinchilla with AdamW, NAdamW, Muon, Soap.
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Phase III: Results on Model Scaling
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Figure 5: Case Studies for 1.2B. Left: Validation loss scaling on 1.2B model for AdamW,
NAdamW, Muon and Soap. Muon and Soap still offer significant speedup over AdamW but no
longer significantly speed up over NAdamW. Right: Estimated speedup ratio, we observe that
Muon and Soap’s speedup decays with model size to only 1.1×.
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Phase III: Results on Data Scaling

Muon is outperformed by Soap in the 8×
Chinchilla regime for the 130M and 520M
models and 16 × Chinchilla regime for
300M models.
Conjecture: The second-order momentum
maintained by Soap and Kron becomes
more effective when the data-to-model
ratio increases. In the long run, adaptivity
to heterogeneity in parameter directions
may lead to a larger speedup.
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Necessity of Hyperparameter Tuning

Even a superior optimizer can
underperform a less advanced method
when its hyperparameters are not precisely
tuned. In our exhaustive grid searches,
slight deviations from each optimizer’s
ideal learning rate or other critical
hyperparameter often lead to degradation
in validation loss that is large enough to
flip the ordering.
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The early training behavior can be misleading

Validation-loss curves during this initial phase tend to exaggerate performance gaps
and, in some cases, even reverse the eventual ranking.
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Figure 6: Necessity of Careful Tuning. Left: The order of optimizers may flip arbitrarily if
rigorous tuning is missing. Right: Changing a single hyperparameter like weight decay may lead
to misleading faster loss improvement but plateaus later. 23



Common Phenomenon Across Optimizers
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Figure 7: Common Phenomena Across Optimizers. Left: Parameter norm of all optimizers
show a similar trend of increment and decrease, closely aligning the increasing and decaying of
learning rate schedule. Middle: Gradient norm increases during learning rate decay. However,
this increase does not lead to a loss increase. Right: The training loss and evaluation loss
follows the same trend for all optimizers.
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Key takeaways

• With fair tuning, many claimed 1.4–2× speedups shrink to 1.1–1.3×.
• Matrix-preconditioned optimizers are best-in-class, but gains decay with size.

The difference in update rule matters in small Chinchilla regime but diminishes
with more data.

• Variance-reduction techniques provide a small but consistent 1.1× speedup, and
there is no significant difference between the concrete way to perform variance
reduction.

• Always compare at target budget, across scales and data ratios.
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Reflections After The Paper Releases

Thanks for helpful discussions over X. We have some more reflections on our study.

Our objective: Find the best hyperparameters that reaches lowest loss in one pass of
a fixed amount of data (this includes the batch size).

In practice: Wall time matters, and it crucially depends on the MFUs. Especially,
batch size positively correlates with MFUs (Marin issue).

Figure 8: Effect of BSZ. Left: MFU increases with larger batch size. Right: Muon’s gap with
AdamW widens in the large batch size regime.
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