

Gated KalmaNet: A Fading Memory Layer through Test-Time Ridge Regression

Aditya Chattopadhyay
Applied Scientist, AWS Agentic AI

Collaborators: Liangzu Peng¹, Luca Zancato, Elvis Nunez,
Wei Xia, Stefano Soatto

¹Work done during an internship at AWS Agentic AI.

Rise of Long-context LLMs

- Long-context processing imperative to unlocking new model capabilities.
 - ❖ Code automation over large repositories.
 - ❖ Aggregate information across multiple documents.
 - ❖ Long-consistent reasoning traces for agentic applications.

Rise of Long-context LLMs

- Significant effort devoted in recent years at increasing context length of LLMs.
 - ❖ From 8k in 2023 to over 1M tokens in 2025!

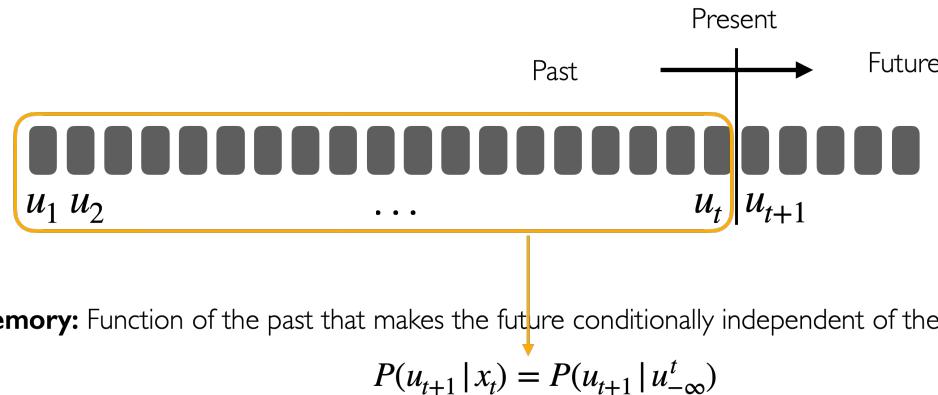
Model	Context Window	Artificial Analysis Intelligence Index
G Gemini 3 Pro Preview (high) (Vertex)	1m	73
G Gemini 3 Pro Preview (high) (AI Studio)	1m	73
A Claude Opus 4.5	200k	70
A Claude Opus 4.5 Vertex	200k	70
A Claude Opus 4.5	200k	70
G GPT-5.1 (high)	400k	70
G GPT-5 Codex (high)	400k	68
G Kimi K2 Thinking Turbo	262k	67

Image: <https://huggingface.co/spaces/ArtificialAnalysis/LLM-Performance-Leaderboard>

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

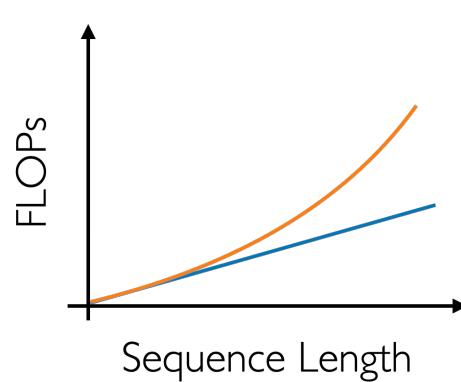
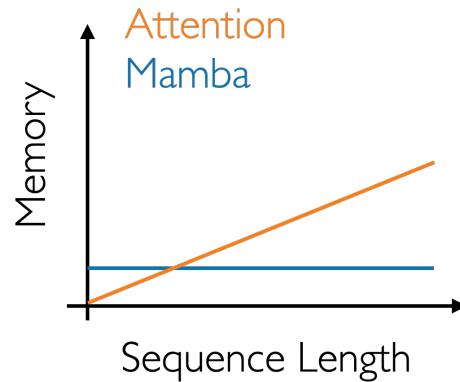
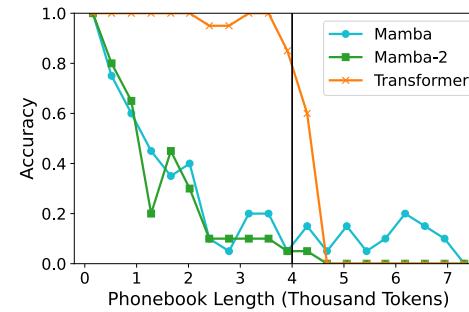
Memory for sequence models

- Memory is a *sufficient statistic* of the past.



- **Challenge:** Data generating mechanism not known *a priori*.

Eidetic vs Fading Memory



- Eidetic (Attention): Keeps entire past verbatim in memory, high compute and storage costs, Perfect recall.
- Fading (SSMs): Compresses the past into a fixed-sized memory, low compute and storage costs, Low recall.

Designing memory through test-time regression

- Attention can be seen as the solution to the following regression problem¹.

$$y_t = \underset{v}{\operatorname{argmin}} \sum_{i=1}^t \exp \left(\frac{k_i^\top q_t}{\sqrt{D}} \right) \cdot \|v - v_i\|_2^2.$$

↓

$$y_t = \sum_{i=1}^t c_i v_i, \quad c_i := \frac{\exp(\frac{k_i^\top q_t}{\sqrt{D}})}{\sum_{i=1}^t \exp(\frac{k_i^\top q_t}{\sqrt{D}})}. \quad (\text{Attn})$$

- Uses entire KV-cache to solve its regression objective.

1. Wang et al. "Test-time regression: a unifying framework for designing sequence models with associative memory." arXiv preprint arXiv:2501.12352 (2025).

Designing memory through test-time regression

- Several existing SSMs can be seen as solving an *instantaneous* objective^{1,2},
 - ❖ depends only on current key, value and previous lossy memory.
- Examples,
 - ❖ DeltaNet is 1-step SGD applied to $\mathcal{L}_t = \left\| Sk_t - v_t \right\|_2^2$
$$\begin{aligned} \mathbf{S}_t &= \mathbf{S}_{t-1} - \beta_t \nabla \mathcal{L}_t(\mathbf{S}_{t-1}) \\ &= \mathbf{S}_{t-1} - \beta_t (\mathbf{S}_{t-1} \mathbf{k}_t - \mathbf{v}_t) \mathbf{k}_t^\top \end{aligned}$$
 - SGD on \mathcal{L}_t with initialization $\gamma_t \mathbf{S}_{t-1}$ gives the Gated DeltaNet update, $\beta_t, \gamma_t \in (0,1)$

1. Yang, et al. "Parallelizing linear transformers with the delta rule over sequence length." Advances in neural information processing systems 37 (2024): 115491-115522.
2. Wang et al. "Test-time regression: a unifying framework for designing sequence models with associative memory." arXiv preprint arXiv:2501.12352 (2025).

Attention vs. existing SSM layers

- We hypothesize this myopic view of SSM objectives result in their lower performance and limited long-context abilities.
 - ❖ SSMs update memory based on current time-step and lossy previous memory.
 - ❖ Attention uses the entire exact KV-cache to solve its objective.
- What is an **objective** that considers the **entire past as Attention** while still being solvable **in linear time as linear SSMs?**

Gated KalmaNet: A Linear SSM Layer Inspired by the Kalman Filter

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.

Motivation from Kalman Filter (KF)

- KF is an established online approach that takes **exact past** into account to **optimally solve** a Weighted Ridge Regression (WRR) objective.

$$S_t = \arg \min_{S \in \mathbb{R}^{D \times D}} \lambda \cdot \|S\|_F^2 + \sum_{i=1}^t \eta_i \cdot \|Sk_i - v_i\|_2^2, \quad (\text{WRR})$$

- Unlike existing SSMs, takes entire past into account ☺
 - ❖ More expressive than Linear Attention, Mamba2, Gated DeltaNet etc.
- Unlike Attention, does not need to store the entire KV-cache ☺
 - ❖ Thanks to the parametric linear estimator S_t that enables a constant-sized memory.

Contrasting with Attention

Our objective (WRR)

$$S_t = \arg \min_{S \in \mathbb{R}^{D \times D}} \lambda \cdot \|S\|_F^2 + \sum_{i=1}^t \eta_i \cdot \|Sk_i - v_i\|_2^2,$$

Attention's objective (Attn)

$$y_t = \operatorname{argmin}_v \sum_{i=1}^t \exp \left(\frac{k_i^\top q_t}{\sqrt{D}} \right) \cdot \|v - v_i\|_2^2.$$

- ❖ Attn learns a non-parametric estimator while WRR computes a parametric linear estimator.
 - Thus, no need to store the entire KV-cache.
- ❖ Attn has query-dependent weights, WRR has weights that are input-dependent and exponentially fading time (more on this later).
- ❖ WRR has constant-sized memory, need regularization to prevent fuzzy recall. λ controls memorization capacity of our memory.

Hurdles Towards Scalable Kalman Filter SSMs

- Memory update for KF,

$$S_t = S_{t-1} - \frac{\underbrace{(S_{t-1}k_t - v_t)}_{\text{Innovation/Surprise}} k_t^\top \Phi_{t-1}}{1/\eta_t + k_t^\top \Phi_{t-1} k_t}, \quad (\text{KF})$$

Φ_{t-1} is inverse of the Hessian of WRR at time $t - 1$.

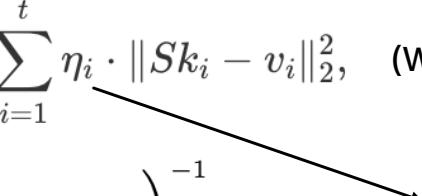
- Challenges:

- ❖ *Parallelizable Training:* KF is sequential and lacks a hardware-aware implementation.
- ❖ *Numerical Stability:* KF involves matrix inversion that can be numerical unstable in low-precision LLM training environments.

Gated KalmaNet (GKA)

- Our technical contribution in GKA is to solve the aforementioned challenges for implementing KF at scale.
- First step is to observe that WRR admits a closed form solution.

$$S_t = \arg \min_{S \in \mathbb{R}^{D \times D}} \lambda \cdot \|S\|_F^2 + \sum_{i=1}^t \eta_i \cdot \|Sk_i - v_i\|_2^2, \quad (\text{WRR})$$

$$S_t = \left(\sum_{i=1}^t \eta_i v_i k_i^\top \right) \left(\sum_{i=1}^t \eta_i k_i k_i^\top + \lambda I \right)^{-1}$$


Input-dependent gates

Gated KalmaNet (GKA): Forward Pass

- Thus, the complete GKA forward pass at time t becomes.

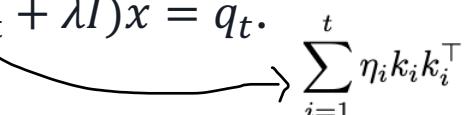
$$S_t = \left(\underbrace{\sum_{i=1}^t \eta_i v_i k_i^\top}_{U_t} \right) \left(\underbrace{\sum_{i=1}^t \eta_i k_i k_i^\top}_{H_t} + \lambda I \right)^{-1} \quad \begin{matrix} \text{(Memory update)} \\ \text{(Readout)} \end{matrix}$$
$$y_t = S_t q_t$$

- Steps to compute y_t ,
 - ❖ Solve for x , $(H_t + \lambda I)x = q_t \leftarrow$ Naïve computation takes $O(d^3)$, where $q_t \in R^d$
 - ❖ Compute $y_t = U_t x$

Innovation 1: Parallel Training

- Steps to compute y_t ,
 - ❖ Solve for x , $(H_t + \lambda I)x = q_t$. ← Naïve computation takes $O(d^3)$, where $q_t \in R^d$
 - ❖ Compute $y_t = U_t x$
- We employ Chebyshev Iteration (CH), a first-order iterative method to solve for x .
 - ❖ Reduces complexity from $O(d^3) \rightarrow O(d^2r)$, where r is number of iterations.
 - $r \leq 30$ iterations in our experiments in the paper, compared to $d = 128$.
 - ❖ Allows for an efficient parallel implementation via matrix-vector products.

Innovation 2: Adaptive Regularization

- Recall, KF involves matrix inversion that is sensitive to condition number.
 - ❖ This is the step where we solve for x in, $(H_t + \lambda I)x = q_t$.

- Propose **adaptive regularization** to control the condition number.
 - ❖ Specifically, we set, $\lambda_t = a\|H_t\|_F$, then the condition number κ_t can be bounded by

$$\kappa_t = \frac{\lambda_{\max}(H_t) + \lambda_t}{\lambda_{\min}(H_t) + \lambda_t} \leq \frac{\|H_t\|_F + \lambda_t}{\lambda_t} = \frac{a+1}{a}.$$

Innovation 3: Adaptive Weighting

- Recall our WRR objective to compute our memory at each time step

$$S_t = \arg \min_{S \in \mathbb{R}^{D \times D}} \lambda \cdot \|S\|_F^2 + \sum_{i=1}^t \eta_i \cdot \|Sk_i - v_i\|_2^2, \quad (\text{WRR})$$

- To make it more expressive, we make the weights input and time-dependent, that is, $\eta_i \rightarrow \eta_{i,t}$.

- The weights are defined recursively, $\eta_{i,t} = \gamma_t \eta_{i,t-1}$

Function of the current input

Connections with existing SSM layers

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.

A Dynamical System for Fading Memory

- We posit a Linear Gaussian Model for fading memory.

$$s_t = A_t s_{t-1} + B_t u_t + w_t, \quad w_t \sim \mathcal{N}(0, Q_t) \text{ State Transition Equation}$$

$$v_t = k_t^\top s_t + \mu_t, \quad \mu_t \sim \mathcal{N}(0, r_t), \text{ Measurement Equation}$$

- $s_t \in \mathbb{R}^n$ is a latent state that summarizes the past.
- $u_t \in \mathbb{R}^n$ is the control input that updates the state.
- A_t controls “how much of the past to forget”.
- B_t controls “how much of the current input to remember”.
- k_t, v_t are the keys and values observed at time t .

Kalman Filter (KF) for Optimal Inference

- Given the following model for Fading memory,

$$s_t = A_t s_{t-1} + B_t u_t + w_t, \quad w_t \sim \mathcal{N}(0, Q_t) \text{ State Transition Equation}$$

$$v_t = k_t^\top s_t + \mu_t, \quad \mu_t \sim \mathcal{N}(0, r_t), \text{ Measurement Equation}$$

- KF is a classical algorithm to perform online optimal inference for this model.
- Specifically, given a sequence of keys and values observed, KF computes the MAP estimate for s_t .

$$\hat{s}_t = \arg \max_s P(s \mid \{k_1, v_1\}, \dots, \{k_t, v_t\})$$

Kalman Filter (KF) recursion

- At a high-level the KF recursion can be understood as follows.

$$\hat{s}_t = \underbrace{A_t \hat{s}_{t-1} + B_t u_t}_{\text{Predicted state}} + \underbrace{G_t (v_t - k_t^\top \underbrace{[A_t \hat{s}_{t-1} + B_t u_t]}_{\text{Predicted state}})}_{\text{Innovation}},$$

- ❖ Predicted state is the state transition equation applied to \hat{s}_{t-1} .
- ❖ G_t is the Kalman Gain which accounts for feedback from the true measurement v_t and predicted measurement.
 - Kalman Gain depends on the whole history via the error covariance → uncertainty in state estimate based on key-value pairs observed so far.

Existing SSMs = Approximate Kalman Filters

- DeltaNet assumes steady-state model,

$$\begin{aligned} s_t &= s_{t-1} \\ v_{t,i} &= k_t^\top s_t + \mu_t, \quad \mu_t \sim \mathcal{N}(0, r_t), \end{aligned} \tag{15}$$

where $A_t = I_n$, $B_t = 0$, and $w_t = 0$ (i.e., no state evolution, no control input, and no process noise).

- DeltaNet state update approximates the Kalman Gain by assuming identity error covariance matrix.
 - ❖ Avoids tracking uncertainty in state over time.

Existing SSMs = Approximate Kalman Filters

- Gated DeltaNet (GDN) assumes a simplified fading memory model,
$$s_t = \alpha_t s_{t-1} + w_t \quad w_t \sim \mathcal{N}(0, I_n)$$
$$v_{t,i} = k_t^\top s_t + \mu_t, \quad \mu_t \sim \mathcal{N}(0, r_t),$$
- Like DeltaNet, GDN's state update also approximates the Kalman Gain by assuming identity error covariance matrix.
- Kimi Delta Attention, extends GDN by using channel-specific decay factors $\alpha_{t,i}$ instead of a global α_t .
 - ❖ Still assumes identity error covariance matrix!

GKA: Exact Kalman Filter for the Steady-State model

- The KF recursion in its most general form is not amenable to parallelization
- In GKA, we assume the same steady-state model as DeltaNet, but implement **the exact KF recursion**.
 - ❖ The Kalman Gain accounts for the full history via tracking the exact error covariance matrix.

Connections with MesaNet

- MesaNet¹ also proposes to solve a WRR objective to update the state

$$\hat{\Phi}_t^{\text{mesa}} = \arg \min_{\Phi} \mathcal{L}_t(\Phi), \quad \text{with} \quad \mathcal{L}_t(\Phi) = \frac{1}{2} \sum_{t'=1}^t \|v_{t'} - \Phi k_{t'}\|^2 + \frac{\text{Tr}(\Phi^\top \Lambda \Phi)}{2}.$$

- Key Difference 1:
 - ❖ Learns a time-independent regularizer Λ from data,
 - Can result in training instabilities as the condition number is not controlled.
 - We explicitly control for it with adaptive regularization $\lambda_t = a\|H\|_F$.

1. von Oswald, Johannes, et al. "MesaNet: Sequence Modeling by Locally Optimal Test-Time Training." arXiv preprint arXiv:2506.05233 (2025).

Connections with MesaNet

- MesaNet¹ also proposes to solve a WRR objective to update the state

$$\hat{\Phi}_t^{\text{mesa}} = \arg \min_{\Phi} \mathcal{L}_t(\Phi), \quad \text{with} \quad \mathcal{L}_t(\Phi) = \frac{1}{2} \sum_{t'=1}^t \|v_{t'} - \Phi k_{t'}\|^2 + \frac{\text{Tr}(\Phi^\top \Lambda \Phi)}{2}.$$

- Key Difference 2:
 - ❖ Employs Conjugate Gradient (CG) as the iterative solver for parallel training.
 - CG is unstable in low-precision environments and leads to **erroneous** gradients.
 - We employ Chebyshev Iteration (CH) which we show is more stable and has “exact” gradients.

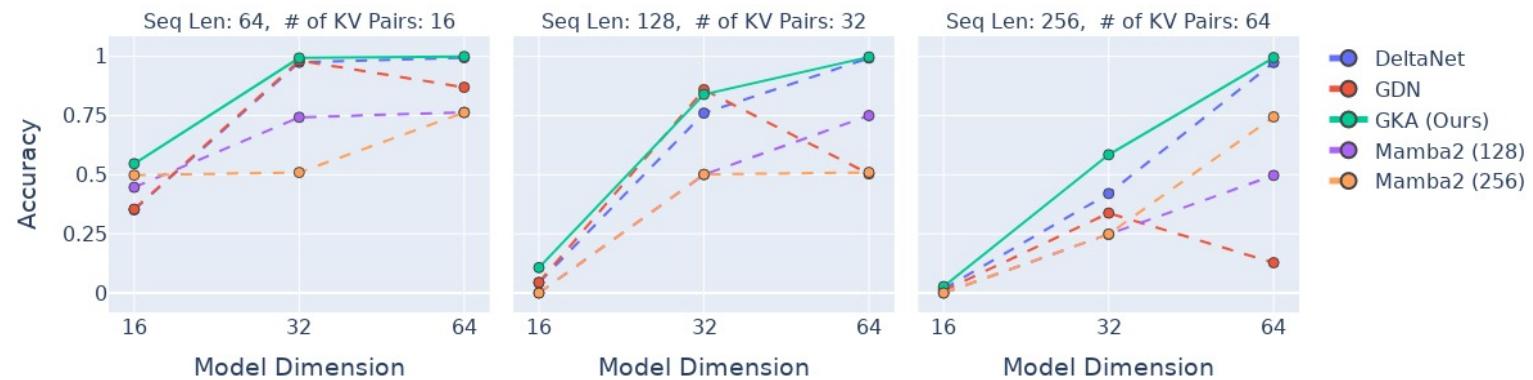
1. von Oswald, Johannes, et al. "MesaNet: Sequence Modeling by Locally Optimal Test-Time Training." arXiv preprint arXiv:2506.05233 (2025).

Experiments

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.

Multi-Query Associative Recall Tasks

- GKA outperforms other fading memory layers on challenging synthetic recall tasks.



GKA scaling laws

Table 5. **GKA shows stronger scaling with compute than other SSM baseline models.** LM-Harness results for models at different scales: 440M, 1B and 2.8B. All models were trained from scratch. 440M and 1B models were trained on 8B and 20B tokens respectively in accordance to the Chinchila scaling laws [24]. For the 2.8B model we trained on 100B tokens.

Model	ARC-C	ARC-E	BoolQ	COPA	HellaSWAG	PIQA	SciQ	Winogrande	FDA	SWDE	Avg
	acc_n ↑	acc_n ↑	acc ↑	acc ↑	acc_n ↑	acc_n ↑	acc_n ↑	acc ↑	contains ↑	contains ↑	
<i>440M Models</i>											
Transformer	24.40	42.26	59.88	70.00	36.19	64.15	61.50	51.70	5.17	35.64	45.09
Gated Linear Attention	24.06	40.28	56.57	71.00	32.70	62.24	57.80	50.67	1.00	9.18	40.55
Gated DeltaNet	25.17	41.96	58.23	72.00	36.96	64.69	<u>63.6</u>	51.7	1.91	11.88	42.81
DeltaNet	<u>25.09</u>	41.92	61.13	65.00	<u>37.20</u>	<u>64.47</u>	64.00	49.49	<u>2.81</u>	<u>14.31</u>	42.54
Gated KalmaNet (Ours)	24.57	43.22	56.94	<u>71.00</u>	37.22	<u>64.47</u>	62.8	50.83	1.45	14.04	42.65

GKA scaling laws

Table 5. **GKA shows stronger scaling with compute than other SSM baseline models.** LM-Harness results for models at different scales: 440M, 1B and 2.8B. All models were trained from scratch. 440M and 1B models were trained on 8B and 20B tokens respectively in accordance to the Chinchila scaling laws [24]. For the 2.8B model we trained on 100B tokens.

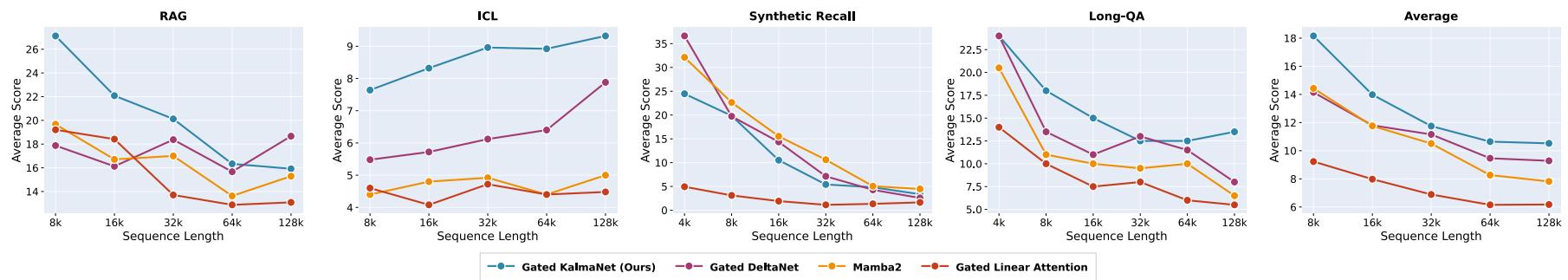
Model	ARC-C	ARC-E	BoolQ	COPA	HellaSWAG	PIQA	SciQ	Winogrande	FDA	SWDE	Avg
	acc_n ↑	acc_n ↑	acc ↑	acc ↑	acc_n ↑	acc_n ↑	acc_n ↑	acc ↑	contains ↑	contains ↑	
<i>440M Models</i>											
Transformer	24.40	42.26	59.88	70.00	36.19	64.15	61.50	51.70	5.17	35.64	45.09
Gated Linear Attention	24.06	40.28	56.57	71.00	32.70	62.24	57.80	50.67	1.00	9.18	40.55
Gated DeltaNet	25.17	41.96	58.23	72.00	36.96	64.69	<u>63.6</u>	51.7	1.91	11.88	<u>42.81</u>
DeltaNet	<u>25.09</u>	41.92	61.13	65.00	<u>37.20</u>	<u>64.47</u>	64.00	49.49	<u>2.81</u>	<u>14.31</u>	42.54
Gated KalmaNet (Ours)	24.57	43.22	56.94	<u>71.00</u>	37.22	64.47	62.8	50.83	1.45	14.04	42.65
<i>1B Models</i>											
Transformer	26.62	46.42	59.94	77.00	44.01	67.14	68.30	54.06	8.35	45.18	49.70
Mamba2	28.07	<u>46.63</u>	<u>60.21</u>	70.00	<u>44.57</u>	67.57	65.50	<u>54.30</u>	1.45	15.75	45.40
Gated Linear Attention	25.94	42.00	58.84	70.00	36.34	63.60	58.20	51.85	1.45	10.53	41.88
Gated DeltaNet	27.05	47.98	59.54	<u>74.00</u>	44.27	67.36	66.2	53.83	2.18	17.82	46.02
DeltaNet	<u>27.56</u>	46.25	59.97	71.00	43.18	<u>67.74</u>	65.90	55.41	3.09	20.61	46.07
Gated KalmaNet (Ours)	25.43	46.55	60.73	<u>74.00</u>	44.59	68.88	67.60	52.41	<u>6.17</u>	<u>21.87</u>	<u>46.82</u>

GKA scaling laws

Table 5. **GKA shows stronger scaling with compute than other SSM baseline models.** LM-Harness results for models at different scales: 440M, 1B and 2.8B. All models were trained from scratch. 440M and 1B models were trained on 8B and 20B tokens respectively in accordance to the Chinchila scaling laws [24]. For the 2.8B model we trained on 100B tokens.

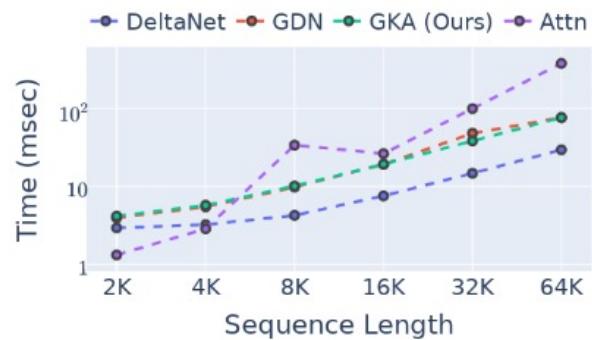
Model	ARC-C	ARC-E	BoolQ	COPA	HellaSWAG	PIQA	SciQ	Winogrande	FDA	SWDE	Avg
	acc_n ↑	acc_n ↑	acc ↑	acc ↑	acc_n ↑	acc_n ↑	acc_n ↑	acc ↑	contains ↑	contains ↑	
<i>440M Models</i>											
Transformer	24.40	42.26	59.88	70.00	36.19	64.15	61.50	51.70	5.17	35.64	45.09
Gated Linear Attention	24.06	40.28	56.57	71.00	32.70	62.24	57.80	50.67	1.00	9.18	40.55
Gated DeltaNet	25.17	41.96	58.23	72.00	36.96	64.69	<u>63.6</u>	51.7	1.91	11.88	42.81
DeltaNet	<u>25.09</u>	41.92	61.13	65.00	<u>37.20</u>	<u>64.47</u>	64.00	49.49	<u>2.81</u>	<u>14.31</u>	42.54
Gated KalmaNet (Ours)	24.57	43.22	56.94	<u>71.00</u>	37.22	64.47	62.8	50.83	1.45	14.04	42.65
<i>1B Models</i>											
Transformer	26.62	46.42	59.94	77.00	44.01	67.14	68.30	54.06	8.35	45.18	49.70
Mamba2	28.07	<u>46.63</u>	<u>60.21</u>	70.00	<u>44.57</u>	67.57	65.50	<u>54.30</u>	1.45	15.75	45.40
Gated Linear Attention	25.94	42.00	58.84	70.00	36.34	63.60	58.20	51.85	1.45	10.53	41.88
Gated DeltaNet	27.05	47.98	59.54	<u>74.00</u>	44.27	67.36	66.2	53.83	2.18	17.82	46.02
DeltaNet	<u>27.56</u>	46.25	59.97	71.00	43.18	<u>67.74</u>	65.90	55.41	3.09	20.61	46.07
Gated KalmaNet (Ours)	25.43	46.55	60.73	<u>74.00</u>	44.59	68.88	67.60	52.41	<u>6.17</u>	21.87	46.82
<i>2.8B Models</i>											
Transformer	32.25	56.10	64.28	80.00	60.96	73.56	79.50	61.72	58.53	72.28	63.92
Mamba2	32.24	59.64	58.72	<u>82.00</u>	62.23	73.78	79.80	62.19	7.71	41.13	55.94
Gated Linear Attention	27.82	50.80	<u>52.57</u>	78.00	48.83	70.13	69.60	54.54	2.81	20.43	47.55
Gated DeltaNet	<u>32.59</u>	60.02	<u>62.75</u>	<u>82.00</u>	<u>62.8</u>	<u>74.32</u>	<u>80.6</u>	<u>62.35</u>	8.26	44.28	57.00
DeltaNet	32.85	58.16	42.51	81.00	61.13	73.78	43.90	61.72	11.80	46.08	51.29
Gated KalmaNet (Ours)	32.51	<u>59.89</u>	61.68	85.00	63.84	74.81	83.2	64.17	<u>12.89</u>	<u>50.95</u>	58.89

Long context performance of GKA



- GKA shows strong RAG and Long-QA capabilities.
 - ❖ Outperforms all fading memory baselines on average.

GKA as comparable runtime with existing SSMs



(b) Runtime of a single memory layer

- GKA has linear time-complexity with sequence length.
- Comparable to GDN in (forward+backward) pass.
- Our parallel Triton implementation of GKA is fast.

Next steps

- We presented a fading memory layer that takes the entire past into account and implemented it efficiently on hardware.
- Although it improves over existing SSM layers, gap with Attention exists, especially on recall-oriented tasks.
 - ❖ This is inevitable for any compression-based memory layer.
 - What is relevant is not known a priori.
- It's possible to combine GKA with Attention to build Hybrid models (eidetic + fading) or Hybrid layers (à la B'MOJO).

Coming Soon: Hybrid Model Library

- Comprehensive library for efficiently training Hybrid models at scale (large # parameters + long sequences)
- Hybridize pre-trained Transformers → Hybrid variants (Mamba2, GDN, KDA, ...)
- GKA kernels and GKA-based models will be released too.

Foster new cutting-edge research in Hybrid models

... stay tuned!!!

Thank you!

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

