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Rise of Long-context LLMs

» Long-context processing imperative to unlocking new model
capabilities.

< Code automation over large repositories.
< Aggregate information across multiple documents.
< Long-consistent reasoning traces for agentic applications.



Rise of Long-context LLMs

> Significant effort devoted in recent years at increasing context
length of LLMs.

% From 8k in 2023 to over 1M tokens in 2025!
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Memory for sequence models

> Memory is a sufficient statistic of the past.

Present
Past Future
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Memory: Function of the past that makes the future conditionally independent of the past

P(u,q|x) = P(uy, | uioo)

» Challenge: Data generating mechanism not known a priori.



Eidetic vs Fading Memory
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> Eidetic (Attention): Keeps entire past verbatim in memory, high
compute and storage costs, Perfect recall.

» Fading (SSMs): Compresses the past into a fixed-sized memory,
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Designing memory through test-time regression

> Attention can be seen as the solution to the following regression
problem?.

t
. k.th) 2
y; = argmin ) _ exp ( =) - v —vil3.
B VD

t exp(E L)
Yt = Z CiVi, Ci = : \/Bkth (Attn)
i=1 > i1 €xP( VD )

» Uses entire KV-cache to solve its regression objective.

1. Wang et al. "Test-time regression: a unifying framework for designing sequence models with associative memory." arXiv preprint arXiv:2501.12352 (2025).



Designing memory through test-time regression

» Several existing SSMs can be seen as solving an instantaneous
objective'?,

< depends only on current key, value and previous lossy memory.

> Examples,
< DeltaNet is 1-step SGD applied to £, = ||Sk; — vtl|z

St e St—l - ,Btv»ct(st—l)
=8S¢1— ,Bt (st—lkt - Vt) ktT

* SGD on £; with initialization y;S;_; gives the Gated DeltaNet update, £, v: € (0,1)

1. Yang, et al. "Parallelizing linear transformers with the delta rule over sequence length." Advances in neural information processing systems 37 (2024): 115491-115522.
2. Wang et al. "Test-time regression: a unifying framework for designing sequence models with associative memory." arXiv preprint arXiv:2501.12352 (2025).
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Attention vs. existing SSM layers

> We hypothesize this myopic view of SSM objectives result in
their lower performance and limited long-context abilities.

< SSMs update memory based on current time-step and lossy previous
memory.

< Attention uses the entire exact KV-cache to solve its objective.

> What is an objective that considers the entire past as Attention
while still being solvable in linear time as linear SSMs?



Gated KalmaNet: A Linear SSM Layer
Inspired by the Kalman Filter
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Motivation from Kalman Filter (KF)

> KF is an established online approach that takes exact past into
account to optimally solve a Weighted Ridge Regression (WRR)

objective.

t
Si = argmin A - |[S[[5 + Y mi - [|Ski — i3, (WRR)
SeRDxD i—1
» Unlike existing SSMs, takes entire past into account ©
< More expressive than Linear Attention, Mamba2, Gated DeltaNet etc.
> Unlike Attention, does not need to store the entire KV-cache ©

< Thanks to the parametric linear estimator S; that enables a constant-sized
memory.

awsy © 2025, ) iliates. 12



Contrasting with Attention

Our objective (WRR) Attention’s objective (Attn)
¢ t
. kT
St = ?'ER?ZH)\ - [18]I% + 2221: ni - || Ski — vil3, Yt = arginin ;:1 exp ( &%) v = vzH%

< Attn learns a non-parametric estimator while WRR computes a parametric
linear estimator.

* Thus, no need to store the entire KV-cache.

< Attn has query-dependent weights, WRR has weights that are input-
dependent and exponentially fading time (more on this later).

< WRR has constant-sized memory, need regularization to prevent fuzzy
recall. A controls memorization capacity of our memory.



Hurdles Towards Scalable Kalman Filter SSMs

> Memory update for KF, Innovatiop/Surprise
- R
(St—lkt — Ut)k;rq)t—l
1/ne + kf @41k

St = St—l - ) (KF)

®,_, is inverse of the Hessian of WRR at time t - 1.

» Challenges:

< Parallelizable Training: KF is sequential and lacks a hardware-aware
implementation.

< Numerical Stability: KF involves matrix inversion that can be numerical
unstable in low-precision LLM training environments.



Gated KalmaNet (GKA)

> Our technical contribution in GKA is to solve the aforementioned
challenges for implementing KF at scale.

> First step is to observe that WRR admits a closed form solution.

t
S; = argmin \ - || S|/ + Zm - ||Sk; — vil|5, (WRR)

SeRD*D i—1
t t -1
St = (Z Th"Uz'kiT) (Z nikik] + /\I> Input-dependent gates
=1 =1



Gated KalmaNet (GKA): Forward Pass

> Thus, the complete GKA forward pass at time t becomes.
S, = (mekf > (kaik;r +AI> (Memory update)

v, = Siq; (Readout)

» Steps to compute y,,
< Solve for x, (H; + Al)x = q;+——— Naive computation takes 0(d?), where q; € R?

% Compute y, = U;x



Innovation 1: Parallel Training

» Steps to compute y;,
% Solve for X, (Ht + /11)x = (t. +— Naive computation takes 0(d?®), where q; € R¢

% Compute y, = U;x

> We employ Chebyshev Iteration (CH), a first-order iterative
method to solve for x.

< Reduces complexity from 0(d3®) - 0(d?r), where r is number of iterations.
* 1 < 30 iterations in our experiments in the paper, compared to d = 128.

< Allows for an efficient parallel implementation via matrix-vector products.



Innovation 2: Adaptive Regularization

> Recall, KF involves matrix inversion that is sensitive to condition
number.

< This is the step where we solve for x in, (H; + A)x = q;.
AN ZnikikiT
=1

> Propose adaptive regularization to control the condition
number.
< Specifically, we set, A; = a||H;||r, then the condition number x; can be
bounded by
_ /\max(Ht) + At < ”Ht”F + At _ a+1
/\min(Ht) —+ At o )\t a .




Innovation 3: Adaptive Weighting

» Recall our WRR objective to compute our memory at each time
step

t
S, = argmin \ - || S||% + Zm - ||Sk; — vil|5, (WRR)
SeRPxD i—1

» To make it more expressive, we make the weights input and
time-dependent, that is, n; — n;,.

Function of the current input

» The weights are defined recursively, n;; = v¢ i ¢-1



Connections with existing SSM la
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A Dynamical System for Fading Memory

> We posit a Linear Gaussian Model for fading memory.
S¢ = Aisi_1 + Bruy + wy, Wy ~ N(O, Qt) State Transition Equation

vy = kt_'_st + 1, pe ~ N(0,7r;), Measurement Equation
> s; € R"is a latent state that summarizes the past.
> u; € R" is the control input that updates the state.
> A; controls "how much of the past to forget”.
> B, controls “how much of the current input to remember”.
> k;, v, are the keys and values observed at time t.

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
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Kalman Filter (KF) for Optimal Inference

> Given the following model for Fading memory,
S¢ = Aisi_1 + Bruy + wy, Wy N(O, Qt) State Transition Equation

Uy = kt—rst + U, Mt ~ N(O, rt), Measurement Equation

> KF is a classical algorithm to perform online optimal inference
for this model.

> Specifically, given a sequence of keys and values observed, KF
computes the MAP estimate for s;.

S¢ = argmaxP(s | {kl,vl}, ceey {kt,vt})

22



Kalman Filter (KF) recursion

> At a high-level the KF recursion can be understood as follows.

Innovation
_ A

-~

St = i4t§t—1 + Btuﬁ + Gi(vy — kt—r [At§t—1 + Btut] ),

o

Predicted state g 7
Predicted state

< Predicted state is the state transition equation applied to $;_;.

< G, is the Kalman Gain which accounts for feedback from the true
measurement v, and predicted measurement.

» Kalman Gain depends on the whole history via the error covariance — uncertainty in
state estimate based on key-value pairs observed so far.



Existing SSMs = Approximate Kalman Filters

> DeltaNet assumes steady-state model,

St = St—1

(15)
Vt 5 :k;rst‘l‘,uta pe ~ N(0,7¢),

where A; = I,,, B; = 0, and w; = O (i.e., no state evolution,
no control input, and no process noise).

> DeltaNet state update approximates the Kalman Gain by
assuming identity error covariance matrix.

< Avoids tracking uncertainty in state over time.

24



Existing SSMs = Approximate Kalman Filters

> Gated DeltaNet (GDN) assumes a simplified fading memory
model, St = Qi4St—1 + Wy wi ~ N(0, I,)

(R ktTSt + [, Lt ~ N(O,Tt),

> Like DeltaNet, GDN's state update also approximates the Kalman
Gain by assuming identity error covariance matrix.

> Kimi Delta Attention, extends GDN by using channel-specific
decay factors «a,; instead of a global «;.

< Still assumes identity error covariance matrix!

aws © 2025, ) . 25



GKA: Exact Kalman Filter for the Steady-State

model

> The KF recursion in its most general form is not amenable to
parallelization

> In GKA, we assume the same steady-state model as DeltaNet, but
implement the exact KF recursion.

< The Kalman Gain accounts for the full history via tracking the exact error
covariance matrix.

aws © 2025, ) . 26



Connections with MesaNet

> MesaNet' also proposes to solve a WRR objective to update the
state

A @TA@
(I);nesa — arg min »Ct(q))a with Z ||’Ut/ — (I)kt,||2 ( )

@ 25
> Key Difference 1:
< Learns a time-independent regularizer A from data,

* (Can result in training instabilities as the condition number is not controlled.

* We explicitly control for it with adaptive regularization A; = a||H||f.

1. von Oswald, Johannes, et al. "MesaNet: Sequence Modeling by Locally Optimal Test-Time Training." arXiv preprint arXiv:2506.05233 (2025).

N - © 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.
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Connections with MesaNet

> MesaNet' also proposes to solve a WRR objective to update the
state

) @TA@
O = arg min £;(®), with Z [lvr — k|| + ( )
[

> Key Difference 2:

< Employs Conjugate Gradient (CG) as the iterative solver for parallel
training.

» CGis unstable in low-precision environments and leads to erroneous gradients.

* We employ Chebyshev Iteration (CH) which we show is more stable and has “exact” gradients.

1. von Oswald, Johannes, et al. "MesaNet: Sequence Modeling by Locally Optimal Test-Time Training." arXiv preprint arXiv:2506.05233 (2025).
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Experiments

aws
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Multi-Query Associative Recall Tasks

> GKA outperforms other fading memory layers on challenging
synthetic recall tasks.

Seq Len: 64, # of KV Pairs: 16 Seq Len: 128, # of KV Pairs: 32 Seq Len: 256, # of KV Pairs: 64
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GKA scaling laws

Table 5. GKA shows stronger scaling with compute that other SSM baseline models. LM-Harness results for models at different
scales: 440M, 1B and 2.8B. All models were trained from scratch. 440M and 1B models were trained on 8B and 20B tokens respectively in
accordance to the Chinchila scaling laws [24]. For the 2.8B model we trained on 100B tokens.

Model ARC-C ARC-E BoolQ COPA HellaSWAG PIQA SciQ Winogrande FDA SWDE Avg
accntT acc_nt acc T acc T acc_n T acc_nt acc_nt acc T contains T  contains 1
440M Models
Transformer 24.40 42.26 59.88 70.00 36.19 64.15 61.50 51.70 5.17 35.64 45.09
Gated Linear Attention 24.06 40.28 56.57 71.00 32.70 62.24 57.80 50.67 1.00 9.18 40.55
Gated DeltaNet 25.17 41.96 58.23 72.00 36.96 64.69 63.6 51.7 191 11.88 42.81
DeltaNet 25.09 41.92 61.13 65.00 37.20 64.47 64.00 49.49 2.81 14.31 42.54
Gated KalmaNet (Ours) 24.57 43.22 56.94 71.00 37.22 64.47 62.8 50.83 1.45 14.04 42.65
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GKA scaling laws

Table 5. GKA shows stronger scaling with compute that other SSM baseline models. LM-Harness results for models at different
scales: 440M, 1B and 2.8B. All models were trained from scratch. 440M and 1B models were trained on 8B and 20B tokens respectively in
accordance to the Chinchila scaling laws [24]. For the 2.8B model we trained on 100B tokens.

Model ARC-C ARC-E BoolQ COPA HellaSWAG PIQA SciQ Winogrande FDA SWDE Avg
accntT acc_nt acc T acc T acc_n T acc_nt acc_nt acc T contains T  contains 1
440M Models
Transformer 24.40 42.26 59.88 70.00 36.19 64.15 61.50 51.70 5.17 35.64 45.09
Gated Linear Attention 24.06 40.28 56.57 71.00 32.70 62.24 57.80 50.67 1.00 9.18 40.55
Gated DeltaNet 25.17 41.96 58.23 72.00 36.96 64.69 63.6 51.7 191 11.88 42.81
DeltaNet 25.09 41.92 61.13 65.00 37.20 64.47 64.00 49.49 2.81 14.31 42.54
Gated KalmaNet (Ours) 24.57 43.22 56.94 71.00 37.22 64.47 62.8 50.83 1.45 14.04 42.65
1B Models
Transformer 26.62 46.42 59.94 77.00 44.01 67.14 68.30 54.06 8.35 45.18 49.70
Mamba2 28.07 46.63 60.21 70.00 44.57 67.57 65.50 54.30 1.45 15.75 45.40
Gated Linear Attention 25.94 42.00 58.84 70.00 36.34 63.60 58.20 51.85 1.45 10.53 41.88
Gated DeltaNet 27.05 47.98 59.54 74.00 44.27 67.36 66.2 53.83 2.18 17.82 46.02
DeltaNet 27.56 46.25 59.97 71.00 43.18 67.74 65.90 5541 3.09 20.61 46.07
Gated KalmaNet (Ours) 25.43 46.55 60.73 74.00 44.59 68.88 67.60 52.41 6.17 21.87 46.82
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GKA scaling laws

Table 5. GKA shows stronger scaling with compute that other SSM baseline models. LM-Harness results for models at different
scales: 440M, 1B and 2.8B. All models were trained from scratch. 440M and 1B models were trained on 8B and 20B tokens respectively in
accordance to the Chinchila scaling laws [24]. For the 2.8B model we trained on 100B tokens.

Model ARC-C ARC-E BoolQ COPA HellaSWAG PIQA SciQ Winogrande FDA SWDE Avg
accntT acc_nt acc T acc T acc_n T acc_nt acc_nt acc T contains T  contains 1
440M Models
Transformer 24.40 42.26 59.88 70.00 36.19 64.15 61.50 51.70 5.17 35.64 45.09
Gated Linear Attention 24.06 40.28 56.57 71.00 32.70 62.24 57.80 50.67 1.00 9.18 40.55
Gated DeltaNet 25.17 41.96 58.23 72.00 36.96 64.69 63.6 51.7 191 11.88 42.81
DeltaNet 25.09 41.92 61.13 65.00 37.20 64.47 64.00 49.49 2.81 14.31 42.54
Gated KalmaNet (Ours) 24.57 43.22 56.94 71.00 37.22 64.47 62.8 50.83 1.45 14.04 42.65
1B Models
Transformer 26.62 46.42 59.94 77.00 44.01 67.14 68.30 54.06 8.35 45.18 49.70
Mamba2 28.07 46.63 60.21 70.00 44.57 67.57 65.50 54.30 1.45 15.75 45.40
Gated Linear Attention 25.94 42.00 58.84 70.00 36.34 63.60 58.20 51.85 1.45 10.53 41.88
Gated DeltaNet 27.05 47.98 59.54 74.00 44.27 67.36 66.2 53.83 2.18 17.82 46.02
DeltaNet 27.56 46.25 59.97 71.00 43.18 67.74 65.90 5541 3.09 20.61 46.07
Gated KalmaNet (Ours) 25.43 46.55 60.73 74.00 44.59 68.88 67.60 52.41 6.17 21.87 46.82
2.8B Models
Transformer 32.25 56.10 64.28 80.00 60.96 73.56 79.50 61.72 58.53 72.28 63.92
Mamba2 32.24 59.64 58.72 82.00 62.23 73.78 79.80 62.19 771 41.13 55.94
Gated Linear Attention 27.82 50.80 52.57 78.00 48.83 70.13 69.60 54.54 2.81 20.43 4755
Gated DeltaNet 32.59 60.02 62.75 82.00 62.8 74.32 80.6 62.35 8.26 44.28 57.00
DeltaNet 32.85 58.16 4251 81.00 61.13 73.78 43.90 61.72 11.80 46.08 51.29
Gated KalmaNet (Ours) 32.51 59.89 61.68 85.00 63.84 74.81 83.2 64.17 12.89 50.95 58.89
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Average Score

Long context performance of GKA

RAG ICL Synthetic Recall Long-QA Average
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» GKA shows strong RAG and Long-QA capabilities
L]
» Outperforms all fading memory baseli
% Outperforms all fading memory baselines on average.
adws
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GKA as comparable runtime with existing SSMs

-o- DeltaNet -o- GDN - GKA (Ours) -e- Attn
/.
10° = AT
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s Lol
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Time (msec)

2K 4K 8K 16K 32K 64K
Sequence Length

(b) Runtime of a single memory layer

» GKA has linear time-complexity with sequence length.
» Comparable to GDN in (forward+backward) pass.
> Our parallel Triton implementation of GKA is fast.

~ = © 2025, Amazon Web Services, Inc . or its affiliates. All rights reserved. 36



Next steps

> We presented a fading memory layer that takes the entire past
into account and implemented it efficiently on hardware.

> Although it improves over existing SSM layers, gap with
Attention exists, especially on recall-oriented tasks.

< This is inevitable for any compression-based memory layer.

* What is relevant is not known a priori.

> It's possible to combine GKA with Attention to build Hybrid
models (eidetic + fading) or Hybrid layers (a la B'MOJO).

aws © 2025, ) . 37



Coming Soon: Hybrid Model Library

> Comprehensive library for efficiently training Hybrid models at
scale (large # parameters + long sequences)

> Hybridize pre-trained Transformers — Hybrid variants (Mambaz2,
GDN, KDA, ...)

> GKA kernels and GKA-based models will be released too.

Foster new cutting-edge research in Hybrid models

... stay tuned!!!
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Thank you!

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.




