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Rise of Long-context LLMs

Ø Long-context processing imperative to unlocking new model 
capabilities.

v Code automation over large repositories.
v Aggregate information across multiple documents.
v Long-consistent reasoning traces for agentic applications.
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Rise of Long-context LLMs

Ø Significant effort devoted in recent years at increasing context 
length of LLMs.

v From 8k in 2023 to over 1M tokens in 2025!
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Image: https://huggingface.co/spaces/ArtificialAnalysis/LLM-Performance-Leaderboard



© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Memory for sequence models

Ø Challenge: Data generating mechanism not known a priori.
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Ø Memory is a sufficient statistic of the past.
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Ø Eidetic (Attention): Keeps entire past verbatim in memory, high 
compute and storage costs, Perfect recall.

Ø Fading (SSMs): Compresses the past into a fixed-sized memory, 
low compute and storage costs, Low recall.

Eidetic vs Fading Memory

(a) (b) (c)

Figure 3: Evaluation results for pure SSM and Transformer models (trained for 1.1T tokens) on the
Phonebook task illustrated in Figure 2b. (a) On the standard Phonebook task, Transformers are
capable of in-context learning and answering questions that require copying from the input, but SSM
models struggle with this task. (b) In the standard Phonebook setting (i.e., (a)), SSM models exhibit
fuzzy memory—while they are unable to correctly predict the phone number, they predict phone
numbers that share multiple digits (in the right locations) with the correct answer (see Section 3.3.3).
(c) On the Reversed Phonebook formulation, even when notified at the beginning of the context which
phone number they will be asked to recall, SSM models still lag behind Transformer models.

example question answer pairs before the actual question used for testing. For each trial, we randomly
generate names and phone numbers to create the phone book and randomly select which names are
used for the two examples and the final query. Accuracy on this task is then measured by whether the
model generates the correct phone number or not.

We vary the length of the phone book (the number of (name, phone number) pairs) and plot the
accuracy for each phone book length averaged over 20 different random initializations in Figure 3a. The
8B Transformer model can respond correctly with near 100% accuracy for phone book lengths up to its
pretraining context length (4096). In contrast, both Mamba and Mamba-2 models begin to respond
incorrectly for input sequence lengths beyond approximately 500 tokens. In contrast to MMLU, this
behavior persists for Mamba-2 even when training for 3.5T tokens (Figure 7a).

A closer look at the SSM model predictions shows that while they cannot perfectly recall the correct
phone number, these models have compressed information about each phone book entry into their
running states—we show in Figure 3b the average number of correct tokens predicted by Mamba and
Mamba-2 on Phonebook by comparing the predicted answer to the true answer. Figure 3b shows that
pure SSM-based models have fuzzy memory. That is, while they cannot predict the phone number
exactly, they do generally respond with phone numbers that are similar to the correct answer.

Finally, we evaluate whether changing the Phonebook prompt allows for SSM models to achieve better
results. In particular, we prompt the model with the name of the person whose phone number it will
be asked to recall before showing it the phone book (the Reversed formulation in Figure 2b). Figure 3c
shows the results of the 8B Mamba, Mamab-2, and Transformer models in this modified Phonebook
setting. Interestingly, while the SSM models achieve better accuracy as a function of phone book
length using this prompt, the accuracy still degrades for phone books with lengths shorter than 4096
(the sequence length used for pretraining). Even with the modified Phonebook prompt, it remains
challenging for the SSM to decide which information to store exactly and which information to forget
on this task. We hypothesize that finetuning Mamba and Mamba-2 on the Phonebook task would lead
to improved accuracy.

3.3.4 Takeaway

Our experiments training 8B-parameter Mamba and Mamba-2 models showed that while these models
achieve comparable or better accuracy than Transformers on many standard natural language modeling
tasks, they achieve lower accuracy on others. In particular, we identified MMLU (with smaller token
horizons) and Phonebook as challenging tasks for pure SSM-based models and hypothesize that this is
because these tasks require in-context learning, information routing between tokens, and copying from
the context.
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Designing memory through test-time regression

Ø Attention can be seen as the solution to the following regression 
problem1. 

Ø Uses entire KV-cache to solve its regression objective.
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1. Wang et al. "Test-time regression: a unifying framework for designing sequence models with associative memory." arXiv preprint arXiv:2501.12352 (2025).
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Designing memory through test-time regression

Ø Several existing SSMs can be seen as solving an instantaneous 
objective1,2,

v depends only on current key, value and previous lossy memory. 

Ø Examples,

v DeltaNet is 1-step SGD applied to  ℒ! = 𝑆𝑘! −	𝑣! "
"

• SGD on ℒ! with initialization 𝛾!𝑆!"# gives the Gated DeltaNet update, 𝛽!, 𝛾! ∈ (0,1)  
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1. Yang, et al. "Parallelizing linear transformers with the delta rule over sequence length." Advances in neural information processing systems 37 (2024): 115491-115522.
2. Wang et al. "Test-time regression: a unifying framework for designing sequence models with associative memory." arXiv preprint arXiv:2501.12352 (2025).
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Attention vs. existing SSM layers

Ø We hypothesize this myopic view of SSM objectives result in 
their lower performance and limited long-context abilities.

v SSMs update memory based on current time-step and lossy previous 
memory.

v Attention uses the entire exact KV-cache to solve its objective. 

Ø What is an objective that considers the entire past as Attention 
while still being solvable in linear time as linear SSMs?
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Gated KalmaNet: A Linear SSM Layer 
Inspired by the Kalman Filter
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Motivation from Kalman Filter (KF)
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Ø KF is an established online approach that takes exact past into 
account to optimally solve a Weighted Ridge Regression (WRR) 
objective.

Ø Unlike existing SSMs, takes entire past into account J
v More expressive than Linear Attention, Mamba2, Gated DeltaNet etc.

Ø Unlike Attention, does not need to store the entire KV-cache J
v Thanks to the parametric linear estimator 𝑆! that enables a constant-sized 

memory.

(WRR)
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Contrasting with Attention

13

Our objective (WRR)                          Attention’s objective (Attn)                                                    

v Attn learns a non-parametric estimator while WRR computes a parametric 
linear estimator.
• Thus, no need to store the entire KV-cache.

v Attn has query-dependent weights, WRR has weights that are input-
dependent and exponentially fading time (more on this later).

v WRR has constant-sized memory, need regularization to prevent fuzzy 
recall. 𝜆 controls memorization capacity of our memory.
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Hurdles Towards Scalable Kalman Filter SSMs

Ø Memory update for KF,

Ø Challenges:
v Parallelizable Training:  KF is sequential and lacks a hardware-aware 

implementation.
v Numerical Stability: KF involves matrix inversion that can be numerical 

unstable in low-precision LLM training environments.

14

Innovation/Surprise

Φ!"#	is inverse of the Hessian of WRR at time t – 1.
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Gated KalmaNet (GKA)

Ø Our technical contribution in GKA is to solve the aforementioned 
challenges for implementing KF at scale.

Ø First step is to observe that WRR admits a closed form solution.

15

(WRR)

Input-dependent gates
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Gated KalmaNet (GKA): Forward Pass

Ø Thus, the complete GKA forward pass at time t becomes.

Ø Steps to compute 𝑦+,
v Solve for x, (H% + 𝜆𝐼)𝑥 = 𝑞!.
v Compute 𝑦! = 𝑈!𝑥
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(Memory update)

(Readout)𝑦! = 𝑆!𝑞!

𝐻!𝑈!

Naïve computation takes 𝑂 𝑑$ , where q% ∈ 𝑅&
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Innovation 1: Parallel Training

Ø Steps to compute 𝑦+,
v Solve for x, (H% + 𝜆𝐼)𝑥 = 𝑞!.
v Compute 𝑦! = 𝑈!𝑥

Ø We employ Chebyshev Iteration (CH), a first-order iterative 
method to solve for 𝑥.

v Reduces complexity from 𝑂 𝑑. → 𝑂(𝑑"𝑟), where 𝑟 is number of iterations.
• r ≤ 30 iterations in our experiments in the paper, compared to 𝑑 = 128.

v Allows for an efficient parallel implementation via matrix-vector products.
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Naïve computation takes 𝑂 𝑑$ , where q% ∈ 𝑅&
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Innovation 2: Adaptive Regularization

Ø Recall, KF involves matrix inversion that is sensitive to condition 
number.

v This is the step where we solve for x in, (H% + 𝜆𝐼)𝑥 = 𝑞!.

Ø Propose adaptive regularization to control the condition 
number.

v Specifically, we set, 𝜆! = 𝑎| 𝐻! |/, then the condition number 𝜅! can be 
bounded by  

18
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Innovation 3: Adaptive Weighting 

Ø Recall our WRR objective to compute our memory at each time 
step

Ø To make it more expressive, we make the weights input and 
time-dependent, that is, 𝜂2 → 𝜂2,+.

Ø The weights are defined recursively, 𝜂2,+ = 𝛾+ 𝜂2,+34

19

(WRR)

Function of the current input
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Connections with existing SSM layers

20
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A Dynamical System for Fading Memory

Ø We posit a Linear Gaussian Model for fading memory.

Ø 𝑠+ ∈ 	ℝ5 is a latent state that summarizes the past.
Ø 𝑢+ ∈ ℝ5 is the control input that updates the state.
Ø 𝐴+ controls “how much of the past to forget”.
Ø 𝐵+ controls “how much of the current input to remember”.
Ø 𝑘+ , 𝑣+ are the keys and values observed at time 𝑡.

21

State Transition Equation

Measurement Equation
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Kalman Filter (KF) for Optimal Inference

Ø Given the following model for Fading memory,

Ø KF is a classical algorithm to perform online optimal inference 
for this model.

Ø Specifically, given a sequence of keys and values observed, KF 
computes the MAP estimate for 𝑠+. 

22

State Transition Equation

Measurement Equation
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Kalman Filter (KF) recursion

Ø At a high-level the KF recursion can be understood as follows.

v Predicted state is the state transition equation applied to 𝑠̂!01.
v 𝐺! is the Kalman Gain which accounts for feedback from the true 

measurement 𝑣! and predicted measurement.
• Kalman Gain depends on the whole history via the error covariance → uncertainty in 

state estimate based on key-value pairs observed so far.

23
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Existing SSMs = Approximate Kalman Filters

24

Ø DeltaNet assumes steady-state model,

Ø DeltaNet state update approximates the Kalman Gain by 
assuming identity error covariance matrix.

v Avoids tracking uncertainty in state over time.
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Existing SSMs = Approximate Kalman Filters
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Ø Gated DeltaNet (GDN) assumes a simplified fading memory 
model,

Ø Like DeltaNet, GDN’s state update also approximates the Kalman 
Gain by assuming identity error covariance matrix.

Ø Kimi Delta Attention, extends GDN by using channel-specific 
decay factors 𝛼+,2 instead of a global 𝛼+. 

v Still assumes identity error covariance matrix!
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GKA: Exact Kalman Filter for the Steady-State 
model

26

Ø The KF recursion in its most general form is not amenable to 
parallelization

Ø In GKA, we assume the same steady-state model as DeltaNet, but 
implement the exact KF recursion.

v The Kalman Gain accounts for the full history via tracking the exact error 
covariance matrix.
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Connections with MesaNet

Ø MesaNet1 also proposes to solve a WRR objective to update the 
state

Ø Key Difference 1:
v Learns a time-independent regularizer Λ from data,
• Can result in training instabilities as the condition number is not controlled.

• We explicitly control for it with adaptive regularization 𝜆! = 𝑎| 𝐻 |'.
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1. von Oswald, Johannes, et al. "MesaNet: Sequence Modeling by Locally Optimal Test-Time Training." arXiv preprint arXiv:2506.05233 (2025).
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Connections with MesaNet

Ø MesaNet1 also proposes to solve a WRR objective to update the 
state

Ø Key Difference 2:
v Employs Conjugate Gradient (CG) as the iterative solver for parallel 

training.
• CG is unstable in low-precision environments and leads to erroneous gradients.
• We employ Chebyshev Iteration (CH) which we show is more stable and has “exact” gradients.
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1. von Oswald, Johannes, et al. "MesaNet: Sequence Modeling by Locally Optimal Test-Time Training." arXiv preprint arXiv:2506.05233 (2025).
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Experiments

30
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Multi-Query Associative Recall Tasks
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Ø GKA outperforms other fading memory layers on challenging 
synthetic recall tasks.
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GKA scaling laws

32
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GKA scaling laws

33
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GKA scaling laws
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Long context performance of GKA
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Ø GKA shows strong RAG and Long-QA capabilities.
v Outperforms all fading memory baselines on average.
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GKA as comparable runtime with existing SSMs

36

Ø GKA has linear time-complexity with sequence length.
Ø Comparable to GDN in (forward+backward) pass.
Ø Our parallel Triton implementation of GKA is fast.
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Next steps

Ø We presented a fading memory layer that takes the entire past 
into account and implemented it efficiently on hardware.

Ø Although it improves over existing SSM layers, gap with 
Attention exists, especially on recall-oriented tasks.

v This is inevitable for any compression-based memory layer.
• What is relevant is not known a priori.

Ø It's possible to combine GKA with Attention to build Hybrid 
models (eidetic + fading) or Hybrid layers (à la B'MOJO).

37
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Coming Soon: Hybrid Model Library

Ø Comprehensive library for efficiently training Hybrid models at 
scale (large # parameters + long sequences)

Ø Hybridize pre-trained Transformers → Hybrid variants (Mamba2, 
GDN, KDA, ...)

Ø GKA kernels and GKA-based models will be released too.

38

… stay tuned!!!

Foster new cutting-edge research in Hybrid models
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Thank you!
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