
Multiverse: Your Language Models Secretly Decide
How to Parallelize and Merge Generation

Xinyu Yang1*, Yuwei An1*, Hongyi Liu1,
Tianqi Chen1,2, Beidi Chen1

1Carnegie Mellon University , 2NVIDIA

Motivation: I/O-bounded AR Generation

Refer to Kinetics, if we want to generate one token, we need:
1. linear modules computation: 2𝑁𝑃
2. self-attention computation:2𝑟𝑁𝐿!"𝐷 + 𝑟𝑁𝐷
3. KV access: 2𝐼𝑁𝐿!"𝐷 + 𝐼𝑁𝐷 (do not share prefix in the middle of generation)
4. Parameter access: 2𝐼𝑃

N: batch size; P: parameter; I: Arithmetic Intensity; r: Group size; D: hidden dimension

Small Batch Scenarios : If 𝑁 = 1, 𝐿!" = 4096, I = 562.5, 𝑃 = 32B, r = 4, 𝐷 =
4096, Parameter access occupies 99% time.
If we want to be compute-bound, we need to have a batch size of 756
If L#$ = 32768, KV access dominates, it is never compute-bound

Motivation: I/O-bounded AR Generation
Therefore, in most
reasoning tasks. We are
facing I/O-bound. This is
very different to our
current server systems
optimizing for large
throughput chatbot
settings, where most of
the cases fall into Short
Input + Large Batch.

Motivation: Throughput is not everything
Many users care about their own latency instead of the overall throughput.
This is especially important when you want to solve complex tasks.

Goal 1: We want parallel generation.
From the above analyses, we find that the generation speed/latency is
actually bottlenecked by the autoregressive generation. Therefore, can we
enable fine-grained parallel generation within one example?
1. Since most generation cases are I/O-bounded, this do not increase

inference time with parameter and KV sharing.
2. When we care about latency or goodput, parallel generation will reduce

the sequential generation steps, resulting in efficiency gain.

As many work exploring this direction, why they do not solve this problem?
1. For diffusion models, they brute-force predict the output for the whole

sequence at each step, requiring many denoising steps. Moreover, none of
them except Gemini Diffusion works for real-world reasoning tasks.

2. For methods like Best-of-N/MCTS/ToT, they relies on external tools.

Goal 2: we want adaptive, internal parallel generation

Based on the limitations of past work, we find that diffusion
models focus on the token-level parallelism, while other
methods will focus more on semantic-level parallelism.

Current modeling works are mainly from token-level. In this
work, we focus on semantic-level parallelism, exploring how
to adaptively enable it in the model architecture.

token-level

Subtask 1 Subtask 2

semantic-level

What is needed to enable this ability?

In past methods, we find
most generation steps are
still AR steps. Therefore,
we only need to enable
the model to parallelize
its generation at very few
steps. This is supported
by prefix cache. However,
we need to consider how
to natively merge them
without information loss.

Solution: Multiverse based on MapReduce paradigm

Analysis

Subtask 1

Wait, wait.

Verification

Aha!

Subtask 2

Hmm.

Conclusion

[Mask] [Mask] … [Mask] [Mask]

[Mask] Subtask 1 … Wait [Mask]

Analysis Subtask 1 … Wait [Mask]

Analysis Subtask 1 … Wait, wait.

Autoregressive Model Diffusion Model

Analysis: prove an equation

Subtask 1:
simplify LHS

Split

Conclusion: LHS = RHS

Merge

Subtask 2:
simplify RHS

Multiverse Model

It natively enable parallel generation by introducing map stages for
task splitting and reduce stages for result merging

Note: Multiverse is just a proof-of-concept for now, do not expect too much speedup on the current model

Question 1: How to ensure difference between paths
If we just initial two paths with the same prefix, it is just repeated sampling.
As a result, they cannot execute two different tasks.

Our solution is very simple: since the AR generation is dependent on its
prefix. If their prefix is not completely same, they should be different in
generation. This is commonly used in sharing same system prompt for
different questions. Therefore, we only need to first define each task
sequentially and then prefill each path with its own prefix indices as hint.

Question 2: How to merge information from paths
While the map stage do not break the AR modeling (you just have two
independent paths), the reduce stage requires us to merge these paths

We also use a simple way to modelling this: Just let the future generation
conditioned on every tokens before it. This means, at the same time, we can
have more than one things happen.

Question 3: How to switch between stages?
The idea is good. But when do I know that I should move to a different stage

Inspired by the recent reasoning models that use
<Think> and <Answer> to separate their stages.
We think that we can use special tokens to
indicate the start or end of a stage.
For example, if we see </Goal>, we will know
that we should prefill each <Path> X and split the
current request into multiple requests based on
the count of <Outline> with different task id.
Therefore, we need to have an XML-structure to
automatically control its generation workflow.
Moreover, nested structures are also supported.

Observation: the existence of intrinsic parallelism

The modeling framework is good, but do we have such parallel data?

We find their common existence in CoT traces for reasoning tasks

Observation: the existence of intrinsic parallelism

Solve the task by simplifying
LHS and RHS separately

Subtask 1:
setup LHS

and simplify

Split

Conclusion:
Equation is ..

Merge

1. Collective Branch

Solve the
Equation…

Test a from 1 to 3

a=1 a=2 a=3

Split

Merge

Test b from 1 to 3

b=1 b=2 b=3

Split

Merge

Conclusion

3. Consecutive Structure

Analysis the problem

Path 1 Path 2

Split

Merge

Conclusion

k=1 k=2 k=3

Split

Merge

Sub-conclusion 1 Sub-conclusion 2

k=i+1

4. Recursive Structure

Subtask 2:
setup RHS

and simplify

Calculate GCD(96, 160)

Path 1:
Euclidean
algorithm

Split

The correct answer for
GCD(96, 160) is 32.

Merge

2. Selective Branch

Path 2:
Prime

Factorization

Result=32 Result=45

Verification Verification

They can be typically classified into two categories, which can appear alone
or be combined into a consecutive or recursive structure.

Observation: the existence of intrinsic parallelism
Next, we prompt Gemini-2.5 Pro to analyze the occurrence of different types
of parallelism within the CoT traces generated by the s1 team.

First, 98% of data exhibit parallelism in generation, with an average frequency
of 7 times in each example, showing the common existence of parallelism.

Additionally, since we only analyze it in each single trace. More cases fall into
the collective branches where all branches work on some important subtasks

Observation: intrinsic to explicit parallelism
However, the existence of intrinsic parallelism do not directly reflect to our
desired MapReduce structures, how can we add this structure to the trace?
We first prompt the model with hints to think following our structure. However,
since the model still generates sequentially, it seldomly output such structure.
This indicates it is hard to directly generate such CoT traces use AR models

Observation: intrinsic to explicit parallelism
We further use a probing test to check whether the model itself is aware of the
starting of parallelizable branches. Unfortunately, existing models not have such
a sense. we hypothesize the parallelizable branches are just generated following
some internal parallel pattern in the data. The model do not understand it.

Solution: Rewrite the unstructured CoT traces

Solution: Rewrite the unstructured CoT traces

Please refer to our Appendix for the detailed prompt, we want to mention
some important observations in this prompting framework:
1. Do not fuse several tasks into our prompt, this will reduce accuracy.
2. LLMs are not good at copy-and-paste as they will tend to skip some

sentences during long context generation. Therefore, we find explicitly
prompt with “sentence by sentence” is very helpful (but requires more
thinking time). Moreover, we will restrict the edit distance to smaller than
0.2 to avoid skipping too much sentences.

3. Reasoning LLMs will tend to have words “Similarly”, “Alternatively”, or use
cross reference in each paths. Therefore, we will ask the assistant LLMs to
rewrite each path to avoid such problems

Note: most of the data quality is preserved, but we still need mixing sequential data for better performance

Problem: how to instantiate our modeling
For algorithm design, we need to incorporate Multiverse modeling into existing
token mixing layers, which means that we need a variant of attention layer
ensure that different paths can be executed in parallel.

This is not hard to achieve, requires:
1. modifying attention masks: different paths
should not see each other
2. modifying position ids: different paths
should start from the same position
For the end of paths, we will use the max
positions from all paths for future generation.

So Multiverse actually let the model to
decide its own sparse attention pattern

Practical Advantages of Multiverse Attention
First, it can be represented with
the following attention mask and
positions. Therefore, it can be
trained in parallel using
customized attention mask.
Moreover, since it is very similar to
the original casual mask, you can
convert an AR model into a
Multiverse model with training
only on a few examples, which
shows its data efficiency.

Create a Multiverse model can
be cheap without pre-training

Problem: how to generate in parallel
The final technical challenge is existing inference engines cannot support
Multiverse model due to its complex generation flow. To address , we introduce
Multiverse engine based on SGLang.

We choose SGLang instead of
vLLM due to three reasons:
1. radix attention for prefix

sharing in parallel generation
2. continuous batching is very

important for us to switch
between different stages

3. SGLang supports the page size
of KV memory to be one

Train a Multiverse models
Based on Multiverse Curator, we generated Multiverse-1K by rewriting the
reasoning traces generated by Deepseek R1. Typically, this can be done in 1 day
(based on how much quota you have)
We find that when distilling small models (32B), Deepseek R1’s data is much
better than that from Gemini and Claude, with the later models result in
significant repeating and performance drop. We hypothesize this maybe caused
by low entropy or the huge gap of model sizes as you cannot expect a small
model to think the same as a very large model.

Next, we perform supervised fine-tuning with our Multiverse attention. Before
training on each example, we will generate our masks and positions by scanning
the context from left to right as a DAG structure (similar to our inference). For
further acceleration, we can consider to preprocess them before training.
Typically, our training only takes 3 hours on 8 B200 GPUs using flex attention.

Train a Multiverse models: more details
To preserve the data quality, we train our model for 8 epochs, with a mixture
ratio (AR: Multiverse) of 1, 1, 0.9, 0.5, 0.5, 0.1, 0, 0. We will form a pair for each
example and use a symmetric way to sample our training data.

We further try to use separate prompts for different sources:
1. AR: Think step by step before answering.
2. Multiverse: Think step by step and in parallel before answering.

From our experiments, this just slightly improve the degree of parallelism during
inference. Therefore, more explorations need to be done along controllability.

Evaluation: real-world reasoning ability
Multiverse-32B achieves significant improvements over the Qwen2.5 model by
24.5% after SFT on Multiverse-1K, while matching or exceeding the
performance of AR-LLMs. This indicates the effectiveness of our modeling,
showing the modification do not hurt model performance.

Evaluation: efficient test-time scaling
Multiverse-32B exhibits a superior tradeoff between performance and latency
than AR-LLMs. It achieves this by generating more tokens within the same wall-
clock time. (We evaluate on GPQA and MATH500 since they are more sensitive
to the context length)

Thanks You!

Q&A

