
Multiverse: Your Language Models Secretly Decide 
How to Parallelize and Merge Generation

Xinyu Yang1*, Yuwei An1*, Hongyi Liu1, 
Tianqi Chen1,2, Beidi Chen1

1Carnegie Mellon University , 2NVIDIA



Motivation: I/O-bounded AR Generation

Refer to Kinetics, if we want to generate one token, we need:
1. linear modules computation: 2𝑁𝑃
2. self-attention computation:2𝑟𝑁𝐿!"𝐷 + 𝑟𝑁𝐷
3. KV access: 2𝐼𝑁𝐿!"𝐷 + 𝐼𝑁𝐷 (do not share prefix in the middle of generation)
4. Parameter access: 2𝐼𝑃

N: batch size; P: parameter; I: Arithmetic Intensity; r: Group size; D: hidden dimension

Small Batch Scenarios : If 𝑁 = 1, 𝐿!" = 4096, I = 562.5, 𝑃 = 32B, r = 4, 𝐷 =
4096, Parameter access occupies 99% time. 
If we want to be compute-bound, we need to have a batch size of 756
If L#$ = 32768, KV access dominates, it is never compute-bound



Motivation: I/O-bounded AR Generation
Therefore, in most 
reasoning tasks. We are 
facing I/O-bound. This is 
very different to our 
current server systems 
optimizing for large 
throughput chatbot 
settings, where most of 
the cases fall into Short 
Input + Large Batch.



Motivation: Throughput is not everything
Many users care about their own latency instead of the overall throughput. 
This is especially important when you want to solve complex tasks.



Goal 1: We want parallel generation.
From the above analyses, we find that the generation speed/latency is 
actually bottlenecked by the autoregressive generation. Therefore, can we 
enable fine-grained parallel generation within one example?
1. Since most generation cases are I/O-bounded, this do not increase 

inference time with parameter and KV sharing.
2. When we care about latency or goodput, parallel generation will reduce 

the sequential generation steps, resulting in efficiency gain.

As many work exploring this direction, why they do not solve this problem?
1. For diffusion models, they brute-force predict the output for the whole 

sequence at each step, requiring many denoising steps. Moreover, none of 
them except Gemini Diffusion works for real-world reasoning tasks.

2. For methods like Best-of-N/MCTS/ToT, they relies on external tools.



Goal 2: we want adaptive, internal parallel generation

Based on the limitations of past work, we find that diffusion 
models focus on the token-level parallelism, while other 
methods will focus more on semantic-level parallelism.

Current modeling works are mainly from token-level. In this 
work, we focus on semantic-level parallelism, exploring how 
to adaptively enable it in the model architecture.

token-level

Subtask 1 Subtask 2

semantic-level



What is needed to enable this ability? 

In past methods, we find 
most generation steps are 
still AR steps. Therefore, 
we only need to enable 
the model to parallelize 
its generation at very few 
steps. This is supported 
by prefix cache. However,
we need to consider how 
to natively merge them 
without information loss.



Solution: Multiverse based on MapReduce paradigm

Analysis

Subtask 1

Wait, wait.

Verification

Aha!

Subtask 2

Hmm.

Conclusion

[Mask]  [Mask] … [Mask]  [Mask] 

[Mask] Subtask 1 … Wait [Mask] 

Analysis Subtask 1 … Wait [Mask] 

Analysis Subtask 1 … Wait, wait. 

Autoregressive Model Diffusion Model

Analysis: prove an equation 

Subtask 1:
simplify LHS

Split

Conclusion: LHS = RHS 

Merge

Subtask 2:
simplify RHS

Multiverse Model

It natively enable parallel generation by introducing map stages for 
task splitting and reduce stages for result merging

Note: Multiverse is just a proof-of-concept for now, do not expect too much speedup on the current model



Question 1: How to ensure difference between paths
If we just initial two paths with the same prefix, it is just repeated sampling.
As a result, they cannot execute two different tasks.

Our solution is very simple: since the AR generation is dependent on its 
prefix. If their prefix is not completely same, they should be different in 
generation. This is commonly used in sharing same system prompt for 
different questions. Therefore, we only need to first define each task 
sequentially and then prefill each path with its own prefix indices as hint. 



Question 2: How to merge information from paths
While the map stage do not break the AR modeling (you just have two 
independent paths), the reduce stage requires us to merge these paths

We also use a simple way to modelling this: Just let the future generation 
conditioned on every tokens before it. This means, at the same time, we can 
have more than one things happen. 



Question 3: How to switch between stages?
The idea is good. But when do I know that I should move to a different stage

Inspired by the recent reasoning models that use 
<Think> and <Answer> to separate their stages. 
We think that we can use special tokens to 
indicate the start or end of a stage. 
For example, if we see </Goal>, we will know 
that we should prefill each <Path> X and split the 
current request into multiple requests based on 
the count of <Outline> with different task id.
Therefore, we need to have an XML-structure to 
automatically control its  generation workflow. 
Moreover, nested structures are also supported.



Observation: the existence of intrinsic parallelism

The modeling framework is good, but do we have such parallel data?

We find their common existence in CoT traces for reasoning tasks



Observation: the existence of intrinsic parallelism

Solve the task by simplifying 
LHS and RHS separately

Subtask 1:
setup LHS 

and simplify

Split

Conclusion:
Equation is ..

Merge

1. Collective Branch

Solve the 
Equation…

Test a from 1 to 3

a=1 a=2 a=3

Split

Merge

Test b from 1 to 3 

b=1 b=2 b=3

Split

Merge

Conclusion

3. Consecutive Structure

Analysis the problem

Path 1 Path 2

Split

Merge

Conclusion

k=1 k=2 k=3

Split

Merge

Sub-conclusion 1 Sub-conclusion 2

k=i+1

4. Recursive Structure

Subtask 2:
setup RHS 

and simplify

Calculate GCD(96, 160)

Path 1:
Euclidean 
algorithm

Split

The correct answer for 
GCD(96, 160) is 32.

Merge

2. Selective Branch

Path 2: 
Prime 

Factorization

Result=32 Result=45

Verification Verification

They can be typically classified into two categories, which can appear alone 
or be combined into a consecutive or recursive structure.



Observation: the existence of intrinsic parallelism
Next, we prompt Gemini-2.5 Pro to analyze the occurrence of different types 
of parallelism within the CoT traces generated by the s1 team.

First, 98% of data exhibit parallelism in generation, with an average frequency 
of 7 times in each example, showing the common existence of parallelism.

Additionally, since we only analyze it in each single trace. More cases fall into 
the collective branches where all branches work on some important subtasks



Observation: intrinsic to explicit parallelism 
However, the existence of intrinsic parallelism do not directly reflect to our 
desired MapReduce structures, how can we add this structure to the trace?
We first prompt the model with hints to think following our structure. However, 
since the model still generates sequentially, it seldomly output such structure. 
This indicates it is hard to directly generate such CoT traces use AR models



Observation: intrinsic to explicit parallelism 
We further use a probing test to check whether the model itself is aware of the 
starting of parallelizable branches. Unfortunately, existing models not have such 
a sense. we hypothesize the parallelizable branches are just generated following 
some internal parallel pattern in the data. The model do not understand it.



Solution: Rewrite the unstructured CoT traces



Solution: Rewrite the unstructured CoT traces

Please refer to our Appendix for the detailed prompt, we want to mention
some important observations in this prompting framework:
1. Do not fuse several tasks into our prompt, this will reduce accuracy.
2. LLMs are not good at copy-and-paste as they will tend to skip some 

sentences during long context generation. Therefore, we find explicitly 
prompt with “sentence by sentence” is very helpful (but requires more 
thinking time). Moreover, we will restrict the edit distance to smaller than 
0.2 to avoid skipping too much sentences.

3. Reasoning LLMs will tend to have words “Similarly”, “Alternatively”, or use 
cross reference in each paths. Therefore, we will ask the assistant LLMs  to 
rewrite each path to avoid such problems

Note: most of the data quality is preserved, but we still need mixing sequential data for better performance 



Problem: how to instantiate our modeling
For algorithm design, we need to incorporate Multiverse modeling into existing 
token mixing layers, which means that we need a variant of attention layer 
ensure that different paths can be executed in parallel.

This is not hard to achieve, requires:
1. modifying attention masks: different paths 
should not see each other
2. modifying position ids: different paths 
should start from the same position
For the end of paths, we will use the max 
positions from all paths for future generation.

So Multiverse actually let the model to 
decide its own sparse attention pattern



Practical Advantages of Multiverse Attention
First, it can be represented with 
the following attention mask and 
positions. Therefore, it can be 
trained in parallel using 
customized attention mask. 
Moreover, since it is very similar to 
the original casual mask, you can 
convert an AR model into a 
Multiverse model with training 
only on a few examples, which 
shows its data efficiency.

Create a Multiverse model can 
be cheap without pre-training



Problem: how to generate in parallel
The final technical challenge is existing inference engines cannot support 
Multiverse model due to its complex generation flow. To address , we introduce 
Multiverse engine based on SGLang.

We choose SGLang instead of 
vLLM due to three reasons:
1. radix attention for prefix 

sharing in parallel generation
2. continuous batching is very

important for us to switch 
between different stages

3. SGLang supports the page size 
of KV memory to be one



Train a Multiverse models 
Based on Multiverse Curator, we generated Multiverse-1K by rewriting the 
reasoning traces generated by Deepseek R1. Typically, this can be done in 1 day 
(based on how much quota you have)
We find that when distilling small models (32B), Deepseek R1’s data is much 
better than that from Gemini and Claude, with the later models result in 
significant repeating and performance drop. We hypothesize this maybe caused 
by low entropy or the huge gap of model sizes as you cannot expect a small 
model to think the same as a very large model.

Next, we perform supervised fine-tuning with our Multiverse attention. Before 
training on each example, we will generate our masks and positions by scanning 
the context from left to right as a DAG structure (similar to our inference). For 
further acceleration, we can consider to preprocess them before training.
Typically, our training only takes 3 hours on 8 B200 GPUs using flex attention.



Train a Multiverse models: more details
To preserve the data quality, we train our model for 8 epochs, with a mixture 
ratio (AR: Multiverse) of 1, 1, 0.9, 0.5, 0.5, 0.1, 0, 0. We will form a pair for each 
example and use a symmetric way to sample our training data.

We further try to use separate prompts for different sources:
1. AR: Think step by step before answering.
2. Multiverse: Think step by step and in parallel before answering.

From our experiments, this just slightly improve the degree of parallelism during 
inference. Therefore, more explorations need to be done along controllability.



Evaluation: real-world reasoning ability
Multiverse-32B achieves significant improvements over the Qwen2.5 model by 
24.5% after SFT on Multiverse-1K, while matching or exceeding the 
performance of AR-LLMs. This indicates the effectiveness of our modeling, 
showing the modification do not hurt model performance.



Evaluation: efficient test-time scaling
Multiverse-32B exhibits a superior tradeoff between performance and latency 
than AR-LLMs. It achieves this by generating more tokens within the same wall-
clock time. (We evaluate on GPQA and MATH500 since they are more sensitive 
to the context length)



Thanks You!

Q&A


