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= Problem: Why and how Muon optimizes LLMs faster than Adam?
= TL;DR: Muon is more aligned with the associative memory structure in
transformers.
= Muon is most effective when applied to VO and FFNs (associative memory
parameters).
= Muon consistently learns more isotropic parameters than Adam.
= Muon learns the tail classes better than Adam for long-tailed distributions.
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Background



Adam lteration for a Matrix W € R™*"

= (First and second moments est.) g = vec(VwL(W;))

me = Bime_1 + (1 - 51)8}, Ve = Bove1 + (1 - /82)8}2
Me=me/(1—Bf), % =ve/(1-53)

= (Element-wise normalized update)

vec(Wit1) = vec(Ws) — ne e /(\/ ¥ + €)
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Adam lteration for a Matrix W € R™*"

= (First and second moments est.) g = vec(VwL(W;))

A

e =me/(L—BY), U =wv/(1—B5)

= (Element-wise normalized update)

vec(Wit1) = vec(Ws) — ne e /(\/ ¥ + €)

me = fBime_1 + (1 - 51)8}, Ve = Pove_1 + (1 - /82)8}2

Intuition: Adam updates parameters with element-wise normalized gradients.
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Muon Iteration for a Matrix W € R™*"

= (First moment est.) G; = VwL(W;)

B: = pBi_1 + G

= (Spectral-wise normalized update)

B:; = U;X,;V,"(SVD), O = U,V,"
Wii1 = W —n: O
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Practical Efficiency of Adam and Muon

Muon is much faster than Adam across a wide range of model sizes and architectures.

3.0
.l Optimizer comparison by time (NanoGPT speedrun) 20 '\\ —— Muon
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—— Adam 139ms/step Sk == Adamw
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(a) Transformer results (Jordan et al., 2024). (b) MoE results (Kimi, 2025).
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(c) Transformer results (Jordan et al., 2024). (d) MoE results (Kimi, 2025).

Why and how is Muon faster than Adam?
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Empirical findings



Observation 1: VO & FFN are the primary beneficiaries

Practical Implementations of Muon for Transformers

1: For parameter W in Transformer:
2:  If (W is token emb. or 1lmhead) or (W is 1-dim):
3 Implement Adam on W.

4: Else:
5

Implement Muon on W.

Are all parameters contributing equally to Muon’s superiority? Which transformer

components benefit most from Muon compared to Adam?

5/30




Observation 1: VO & FFN are the primary beneficiaries

= 160M NanoGPT on FineWeb; compare independent vs. combined Muon
ablations.

» Independent: Muon in QK, VO, V, O, Wi,, Wy, Weate, respectively.
= Combined: Muon in VO+FFN, VO+W,,, VO+W,,:, V+FFN, O+FFN.

= Attention { Wq, Wk, Wy, Wo} and FEN {Win, Wout, Wiate }-
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Observation 1: VO & FFN are the primary beneficiaries
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Observation 1: VO & FFN are the primary beneficiaries
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= VO weights show larger gains under Muon than the QK weights.
= Only Wy, or only Wy already yields much larger gains than applying it to QK.

= Win, Wgate, and Wo, all benefit from Muon. 7/30
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(d) Combined Configuration with Gated FFN

= VO+FFN under Muon nearly matches full-Muon; QK gains are small.
= Within VO, Wy is more influential than Wy, (clearer in non-gated FFN).
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Observation 1: The Findings

Observation Summary

Muon is most effective when applied to VO and FFN; in particular, applying Muon
to only VO+FFN almost recovers the full-Muon trajectory.
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Why VO & FFN benefit: An Associative Memory View

What structural features of the transformer allow Muon to optimize these
components more effectively?
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Background: Transformers as Associative Memories

Linear Associative Memories

Certain weight matrices in LLMs function as linear associative memories, mapping keys to
values to store and retrieve knowledge (Bietti et al., 2023; Meng et al., 2022).

= Key: subject-relation embedding es < (s = subject, r = relation)

= Value: object embedding e, < (o = object)

= s is the subject, r the relation, and o the object (e.g., s =“The United Nations
headquarters”, r ="is located in", o ="New York City")
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Background: Transformers as Associative Memories

« Retrieval: A weight matrix W recalls the MR

object from the subject-relation key. Let's store: (grass, green) and (sky, blue)
e, = Weg

» Construction: W is formed by summing
the outer products of key-value pairs.

K

_ T

W = E €5€;,
i=1
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object from the subject-relation key. Let's store: (grass, green) and (sky, blue)
e, = We, = 1. Assign Orthogonal Embeddings:
) . _ = Keys: €grass = (1,0) T, eqy = (0,1) T
» Construction: W is formed by summing = Values: €green = (1,0)7, epue = (0,1)7

the outer products of key-value pairs.
= 2. Construct Memory Matrix W:

K
— T W = T T _ 10
W = E €o,€;, = €green€grass + €blueCsy = 0 1
i=1
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Background: Transformers as Associative Memories

« Retrieval: A weight matrix W recalls the MR

object from the subject-relation key.

e, = Weg

» Construction: W is formed by summing
the outer products of key-value pairs.

K

_ T

W = E €5€;,
i=1

Let's store: (grass, green) and (sky, blue)

= 1. Assign Orthogonal Embeddings:

= Keys: €grass = (1,0) T, eqy = (0,1) T
= Values: €green = (1,0)7, epe = (0,1)7

= 2. Construct Memory Matrix W:
10
W = egreene;—rass + ebluee;ll—(y = <0 1)

= 3. Retrieve Facts:
= Query for "grass":

96

Wegrass =



Why VO & FFN benefit: An Associative Memory View

VO and FFN behave as linear associative memories. (Bietti et al., 2023; Meng

et al., 2022)
K
w R Z €o,i eSTi (outer-product store)
VO or FFN J value key
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Why VO & FFN benefit: An Associative Memory View

VO and FFN behave as linear associative memories. (Bietti et al., 2023; Meng

et al., 2022)
K
w R Z €o,i eSTi (outer-product store)
VO or FFN =1l e Vkey
Muon step:

d d
G=USV' = Zs,-u,-v,-T = 0=UV' = Z u,~v,-T
i=1 i=1

updates all orthogonal facts at the same rate
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Verifying the Insight: Two Perspectives

» Weight Spectra:

= Weight matrices learned with Muon exhibit a more isotropic singular-value
spectrum than those learned with Adam.
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Verifying the Insight: Two Perspectives

» Weight Spectra:

= Weight matrices learned with Muon exhibit a more isotropic singular-value
spectrum than those learned with Adam.

= Knowledge Acquisition:

= Muon yields more balanced learning across entities and frequencies (head and tail)
than Adam.
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Observation 2: Muon learns more isotropic spectra

» Metrics: Based on the singular energy distribution q; = 02/>" ajz

= SVD entropy: Hnorm = — 5= S 11 i log qi;

“logn

= effective rank: eRank = exp (—>_ g;log g;);

>0t
= Top-k energy: TopE, = 22:1 012;
j=1J

1

» Qr5/Qas: Q505 = 83&(2:2{;
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Observation 2: Muon learns more isotropic spectra
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Observation 2: Muon learns more isotropic spectra

o SVD entropy (1) Topl0E (1) o SVD entropy (1) Topl0E (1)
— 1.0 o
e e
08
08 08 08
En 6 S z 2%
0.6 0.6 =
3 g0 g g
Zos o4 Sos 20
= - % - 02
"021]—— Muon(All Attn, FFN) 02 021 —— Muon(All Attn, FFN) .
— AllA SN SN S — — — AllA -
00 = 0.0 0.0 = 00
2000 4000 6000 8000 10000 2000 4000 6000 8000 10000 2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
Training Steps Training Steps Training Steps Training Steps
eRank (1) Q75/Q25 Ratio (1) eRank (1) Q75/Q25 Ratio (1)
J 5
600{ (T ] 10 oif—————— 10
- 2 - 2
S400] 10 A s
2 5 | E 2
& g &
© 200 g | “ 200 g
o'l S0t
N— L
0 ——+ 0 SN S S N
2000 4000 6000 8000 10000 2000 4000 6000 8000 10000 2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
Training Steps Training Steps Training Steps Training Steps

(c) Wout(Non-gated FFN) (d) Wou(Gated FFN)

= From early training, Muon yields more isotropic spectra and seed-stable curves; Adam
fluctuates.

= Effects are consistent on VO and FFN (gated and non-gated FFN). 15/30



Observation 2: Findings

Observation Summary

Muon consistently yields more isotropic weight matrices with broadly distributed
spectral energy than Adam, both throughout training and across random initializa-
tions, thereby supporting richer feature representations.
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Observation 3: Muon Acquires Knowledge More Evenly Compared To Adam

= Synthetic QA dataset containing biographical information (e.g., name, birthday,
and company) for over 200,000 individuals (Allen-Zhu and Li, 2024); power-law

sampling across classes;
Ashton Hilda Older has a birthday that falls on February 01, 2063. Miami,

FL is the birthplace of he. He is an alumnus of Saddleback College. He
has a General Literature education. He works closely with BlockFi. For
professional growth, he chose to relocate to Jersey City.

= Metric: First-Token Accuracy (FTA).
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Observation 3: Muon Acquires Knowledge More

Evenly Compared To Adam
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= Head: all optimizers do well; Tail: Muon > Adam with lower variance.

= Muon on VO+FFN retains most gains; QK-only improvement is limited. 17/30



Observation 3: Findings

Observation Summary

In heavy-tailed, knowledge-intensive tasks, Muon matches Adam’s strong perfor-
mance in the head classes while substantially improving learning on tail classes,
narrowing the head-tail gap and accelerating convergence.
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Case Study of One-Layer Models




» Learn K triplets {(s;, r;, 0;) } 5 ;.
= Embed (s;,r;) to E; € RY and o; to E; € RY for i € [K].
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» Learn K triplets {(s;, r;, 0;) } 5 ;.

= Embed (s;,r;) to E; € RY and o; to E; € RY for i € [K].

= Queried by (s;,r;), the network outputs the probability over {o;}X; as
fw(Ex) = sm(ET WE,) € RX,

where E = [Ey,--- , Ex] € R¥*K and E = [E;,--- , Ex] € R¥*K.

= The network is trained with loss

K

LW)==>" pi log[fw (Ei)lk
k=1

where py is the frequency or probability of the k-th triplet.
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The data frequency imbalance is modeled by two groups, where px = /L for k € [L] and
pk=(1—a)/(K—L) for k > L.

Define 8 = L/K. The dataset is perfectly balanced when o = 3, and becomes highly
imbalanced when o < f or f < .
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The data frequency imbalance is modeled by two groups, where px = /L for k € [L] and
pk=(1—a)/(K—L) for k > L.

Define 8 = L/K. The dataset is perfectly balanced when o = 3, and becomes highly
imbalanced when o < f or f < .

The embeddings E and E are orthonormal, i.e., ETE = ETE = Ik k.

If embeddings are not normalized, this becomes another source of imbalance that interacts with

the data frequency imbalance.
20/30



= Vanilla GD:
Wt+1 WtGD - 771’+1VW£(W1‘GD)'
= Adam with 8; =0, 5, = 0 (SignGD):
WfSJﬁnGD WSECD _ ) sien (Vw( WtSignGD))'
= Muon with p = 0:
WMuen = pwMeer 1 Upnorm(Z4) V'

where norm(-) normalizes all non-zero elements to 1 (element-wise), and
Vi L(WMeen) = U, %, V," is the SVD of the gradient.
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Experimental Results

Intuitions recall:

Muon is spectral-wise normalized, while Adam is element-wise normalized.
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Experimental Results

Intuitions recall:
Muon is spectral-wise normalized, while Adam is element-wise normalized.

Embedding settings:

= Support-decoupled: Supp(E;)/Supp(E;) are disjoint for different i, e.g., one-hot bases.

= Support-coupled: Supports may overlap, e.g., general unitary matrix.
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Experimental Results

Intuitions recall:
Muon is spectral-wise normalized, while Adam is element-wise normalized.

Embedding settings:

= Support-decoupled: Supp(E;)/Supp(E;) are disjoint for different i, e.g., one-hot bases.

= Support-coupled: Supports may overlap, e.g., general unitary matrix.
Optimizer settings:

= One-step: Take a single update with a scaled step size.

= Multi-step: Take multiple updates.
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Experimental Results

Imbalance metric: maximal probability gap A(W) = max; jepi[fw(Ei)li — [fw(E)]),
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Experimental Results

Imbalance metric: maximal probability gap A(W) = max; jepi[fw(Ei)li — [fw(E)]),

le+0 le+0
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0 1071 10° 10* 0 1071 10°

Population Loss Population Loss

(a) One-step Optimization Results (b) Multi-step Optimization Results

= Muon consistently achieves balanced learning across all items for any embeddings.

= Adam’s ability to learn balanced items depends on the properties of the embeddings.
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Theoretical Understanding

Theorem (Informal)

= Muon: near-isotropic updates = worst-class prob > 1 — 5(1 + O(%)) once the

best class hits 1 — e. Imbalance: O(e log K/K)
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Theoretical Understanding

Theorem (Informal)

= Muon: near-isotropic updates = worst-class prob > 1 — 5(1 + O(%)) once the
best class hits 1 — e. Imbalance: O(e log K/K)
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Theoretical Understanding

Theorem (Informal)

= Muon: near-isotropic updates = worst-class prob > 1 — 5(1 + O(%)) once the

best class hits 1 — e. Imbalance: O(e log K/K)
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Why aligned with associative memory? (intuition)

» Gradient G = UZVT =Y. 0;u;v;"; Muon uses UVT =Y. u;v;": equal-magnitude
updates per orthogonal outer product.

= Linear memory W = 3", eo,.esT; singular values encode frequency; Muon equalizes learning
rates across head/tail facts.

= Adam'’s elementwise normalization may disrupt matrix structure = imbalance & spectral

concentration.
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Takeaway

Muon's spectral-normalized updates align with the outer-product form of linear associative

memory, delivering isotropic spectra and balanced tail learning. VO+FFN is the main
battleground.
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Relationship to Other Understandings and Phenomena

= Bernstein and Newhouse (2024): Muon and Adam are steepest gradient descents with
respect to the operator norm and vector inf norm, respectively.
— One way to explain why the operator norm is better than the vector inf norm.
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— One way to explain why the operator norm is better than the vector inf norm.

= Zhang et al. (2025): Adopt Muon for online memory updating in RNNs.
— Another evidence to support Muon's superiority in memory structure.

= The exploration and exploitation view in ZhiHu
— Effective learning on the tail classes can be viewed as exploration.
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Thanks for listening!
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