# Muon Outperforms Adam in Tail-End Associative Memory Learning

Shuche Wang\* Fengzhuo Zhang\* Jiaxiang Li\* Cunxiao Du Chao Du Tianyu Pang Zhuoran Yang Mingyi Hong Vincent Y. F. Tan

National University of Singapore, University of Minnesota, Sea Al Lab, Yale University

ASAP Seminar

#### **Outline**

- Problem: Why and how Muon optimizes LLMs faster than Adam?
- TL;DR: Muon is more aligned with the associative memory structure in transformers.
  - Muon is most effective when applied to VO and FFNs (associative memory parameters).
  - Muon consistently learns more isotropic parameters than Adam.
  - Muon learns the tail classes better than Adam for long-tailed distributions.

## Background

#### Adam Iteration for a Matrix $W \in \mathbb{R}^{m \times n}$

• (First and second moments est.)  $g_t = \text{vec}(\nabla_W L(W_t))$ 

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t, \quad v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$$
  
 $\hat{m}_t = m_t / (1 - \beta_1^t), \quad \hat{v}_t = v_t / (1 - \beta_2^t)$ 

• (Element-wise normalized update)

$$extstyle extstyle ext$$

#### Adam Iteration for a Matrix $W \in \mathbb{R}^{m \times n}$

• (First and second moments est.)  $g_t = \text{vec}(\nabla_W L(W_t))$ 

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t, \quad v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$$
  
 $\hat{m}_t = m_t / (1 - \beta_1^t), \quad \hat{v}_t = v_t / (1 - \beta_2^t)$ 

(Element-wise normalized update)

$$extstyle extstyle ext$$

Intuition: Adam updates parameters with element-wise normalized gradients.

#### Muon Iteration for a Matrix $W \in \mathbb{R}^{m \times n}$

• (First moment est.)  $G_t = \nabla_W L(W_t)$ 

$$B_t = \mu B_{t-1} + G_t$$

• (Spectral-wise normalized update)

$$B_t = U_t \Sigma_t V_t^{ op}(\mathsf{SVD}), \quad O_t = U_t V_t^{ op} \ W_{t+1} = W_t - \eta_t \, O_t$$

#### Muon Iteration for a Matrix $W \in \mathbb{R}^{m \times n}$

• (First moment est.)  $G_t = \nabla_W L(W_t)$ 

$$B_t = \mu B_{t-1} + G_t$$

(Spectral-wise normalized update)

$$egin{aligned} B_t &= U_t \Sigma_t V_t^ op ( extsf{SVD}), \quad O_t = U_t V_t^ op \ W_{t+1} &= W_t - \eta_t \ O_t \end{aligned}$$

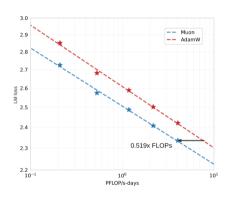
Intuition: Muon updates parameters with spectral-wise normalized gradients.

#### Practical Efficiency of Adam and Muon

Muon is much faster than Adam across a wide range of model sizes and architectures.



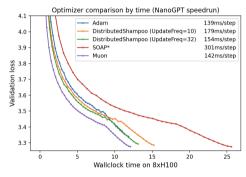
(a) Transformer results (Jordan et al., 2024).



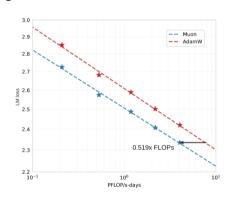
(b) MoE results (Kimi, 2025).

## **Practical Efficiency of Adam and Muon**

Muon is much faster than Adam across a wide range of model sizes and architectures.



(c) Transformer results (Jordan et al., 2024).



(d) MoE results (Kimi, 2025).





## Empirical findings

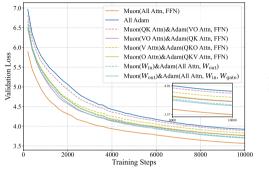
#### **Practical Implementations of Muon for Transformers**

- 1: For parameter W in Transformer:
- 2: If (W is token emb. or lm\_head) or (W is 1-dim):
- 3: Implement Adam on W.
- 4: Else:
- 5: Implement Muon on W.

#### Question

Are all parameters contributing equally to Muon's superiority? Which transformer components benefit most from Muon compared to Adam?

- 160M NanoGPT on FineWeb; compare independent vs. combined Muon ablations.
  - Independent: Muon in QK, VO, V, O,  $W_{in}$ ,  $W_{out}$ ,  $W_{gate}$ , respectively.
  - Combined: Muon in VO+FFN, VO+W<sub>in</sub>, VO+W<sub>out</sub>, V+FFN, O+FFN.
- Attention  $\{W_Q, W_K, W_V, W_O\}$  and FFN  $\{W_{\rm in}, W_{\rm out}, W_{\rm gate}\}$ .

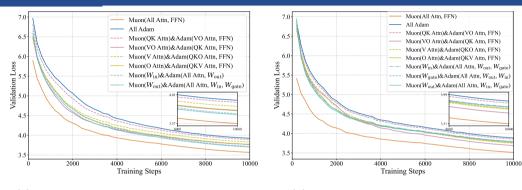


7.0 All Adam Muon(OK Attn)&Adam(VO Attn. FFN) 6.5 Muon(VO Attn)&Adam(OK Attn. FFN) Muon(V Attn)&Adam(OKO Attn, FFN) 6.0 Muon(O Attn)&Adam(OKV Attn. FFN) Validation Loss  $Muon(W_{in})$ &Adam(All Attn,  $W_{out}$ ,  $W_{gate}$ ) Muon(Wgate)&Adam(All Attn, Wout, Win) Muon(Wout)&Adam(All Attn, Win, Wrate) 4.5 4.0 3.5 2000 4000 6000 8000 10000 Training Steps

Muon(All Attn. FFN)

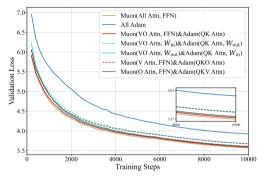
(a) Independent Blocks with Non-gated FFN

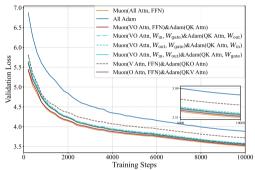
(b) Independent Blocks with Gated FFN



(a) Independent Blocks with Non-gated FFN

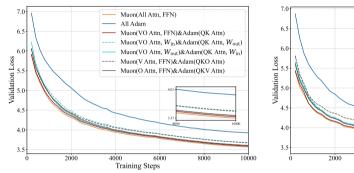
- (b) Independent Blocks with Gated FFN
- VO weights show larger gains under Muon than the QK weights.
- Only  $W_V$  or only  $W_O$  already yields much larger gains than applying it to QK.
- $W_{\text{in}}$ ,  $W_{\text{gate}}$ , and  $W_{\text{out}}$  all benefit from Muon.

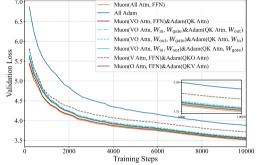




(c) Combined Configuration with Non-gated FFN

(d) Combined Configuration with Gated FFN





- (c) Combined Configuration with Non-gated FFN
- (d) Combined Configuration with Gated FFN
- VO+FFN under Muon nearly matches full-Muon; QK gains are small.
- Within VO,  $W_O$  is more influential than  $W_V$  (clearer in non-gated FFN).

#### **Observation 1: The Findings**

#### **Observation Summary**

Muon is most effective when applied to VO and FFN; in particular, applying Muon to only **VO+FFN** almost recovers the **full-Muon** trajectory.

## Why VO & FFN benefit: An Associative Memory View

#### Question

What structural features of the transformer allow Muon to optimize these components more effectively?

#### **Linear Associative Memories**

Certain weight matrices in LLMs function as **linear associative memories**, mapping keys to values to store and retrieve knowledge (Bietti et al., 2023; Meng et al., 2022).

- Key: subject-relation embedding  $\mathbf{e}_s \leftarrow (s = \text{subject}, r = \text{relation})$
- Value: object embedding  $\mathbf{e}_o \leftarrow (o = \text{object})$

s is the subject, r the relation, and o the object (e.g., s = "The United Nations headquarters", r = "is located in", o = "New York City")

 Retrieval: A weight matrix W recalls the object from the subject-relation key.

$$\mathbf{e}_o = W \mathbf{e}_s$$

 Construction: W is formed by summing the outer products of key-value pairs.

$$W = \sum_{i=1}^K \mathbf{e}_{o_i} \mathbf{e}_{s_i}^{ op}$$

 Retrieval: A weight matrix W recalls the object from the subject-relation key.

$$\mathbf{e}_o = W \mathbf{e}_s$$

 Construction: W is formed by summing the outer products of key-value pairs.

$$W = \sum_{i=1}^K \mathbf{e}_{o_i} \mathbf{e}_{s_i}^{ op}$$

- 1. Assign Orthogonal Embeddings:
  - Keys:  $\mathbf{e}_{\text{grass}} = (1,0)^{\top}$ ,  $\mathbf{e}_{\text{sky}} = (0,1)^{\top}$
  - Values:  $\mathbf{e}_{\mathsf{green}} = (1,0)^{\top}$ ,  $\mathbf{e}_{\mathsf{blue}} = (0,1)^{\top}$

 Retrieval: A weight matrix W recalls the object from the subject-relation key.

$$\mathbf{e}_o = W \mathbf{e}_s$$

 Construction: W is formed by summing the outer products of key-value pairs.

$$W = \sum_{i=1}^K \mathbf{e}_{o_i} \mathbf{e}_{s_i}^{ op}$$

- 1. Assign Orthogonal Embeddings:
  - Keys:  $\mathbf{e}_{\mathsf{grass}} = (1,0)^{\top}$ ,  $\mathbf{e}_{\mathsf{sky}} = (0,1)^{\top}$
  - Values:  $\mathbf{e}_{\mathsf{green}} = (1,0)^{\top}$ ,  $\mathbf{e}_{\mathsf{blue}} = (0,1)^{\top}$
- 2. Construct Memory Matrix W:

$$W = \mathbf{e}_{\mathsf{green}} \mathbf{e}_{\mathsf{grass}}^{ op} + \mathbf{e}_{\mathsf{blue}} \mathbf{e}_{\mathsf{sky}}^{ op} = egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}$$

 Retrieval: A weight matrix W recalls the object from the subject-relation key.

$$\mathbf{e}_o = W \mathbf{e}_s$$

 Construction: W is formed by summing the outer products of key-value pairs.

$$W = \sum_{i=1}^K \mathbf{e}_{o_i} \mathbf{e}_{s_i}^{ op}$$

- 1. Assign Orthogonal Embeddings:
  - Keys:  $\mathbf{e}_{\mathsf{grass}} = (1,0)^{\top}$ ,  $\mathbf{e}_{\mathsf{sky}} = (0,1)^{\top}$
  - Values:  $\mathbf{e}_{\mathsf{green}} = (1,0)^{\top}$ ,  $\mathbf{e}_{\mathsf{blue}} = (0,1)^{\top}$
- 2. Construct Memory Matrix W:

$$W = \mathbf{e}_{\mathsf{green}} \mathbf{e}_{\mathsf{grass}}^{ op} + \mathbf{e}_{\mathsf{blue}} \mathbf{e}_{\mathsf{sky}}^{ op} = egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}$$

- 3. Retrieve Facts:
  - Query for "grass":  $W\mathbf{e}_{\text{grass}} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \mathbf{e}_{\text{green}}$

#### Why VO & FFN benefit: An Associative Memory View

**VO** and **FFN** behave as linear associative memories. (Bietti et al., 2023; Meng et al., 2022)

$$\underbrace{W}_{\text{VO or FFN}} \approx \sum_{i=1}^{K} \underbrace{e_{o,i}}_{\text{value}} \underbrace{e_{s,i}^{\top}}_{\text{key}}$$
 (outer-product store)

#### Why VO & FFN benefit: An Associative Memory View

**VO** and **FFN** behave as linear associative memories. (Bietti et al., 2023; Meng et al., 2022)

$$\underbrace{W}_{\text{VO or FFN}} \approx \sum_{i=1}^{K} \underbrace{e_{o,i}}_{\text{value}} \underbrace{e_{s,i}^{\top}}_{\text{key}}$$
 (outer-product store)

Muon step:

$$G = USV^{\top} = \sum_{i=1}^{d} s_i u_i v_i^{\top} \quad \Rightarrow \quad O = UV^{\top} = \sum_{i=1}^{d} u_i v_i^{\top}$$

updates all orthogonal facts at the same rate

### Verifying the Insight: Two Perspectives

#### Weight Spectra:

 Weight matrices learned with Muon exhibit a more isotropic singular-value spectrum than those learned with Adam.

### Verifying the Insight: Two Perspectives

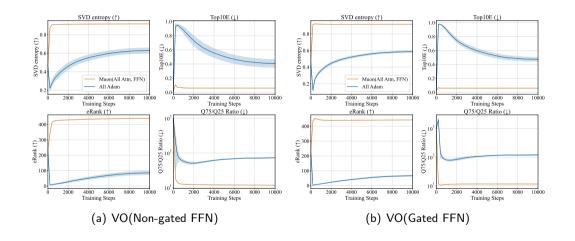
#### Weight Spectra:

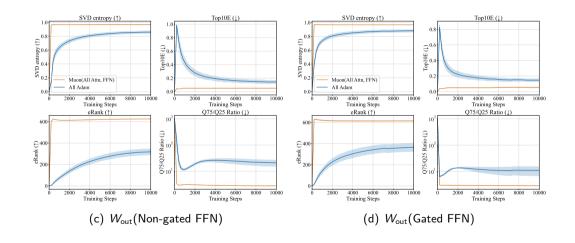
 Weight matrices learned with Muon exhibit a more isotropic singular-value spectrum than those learned with Adam.

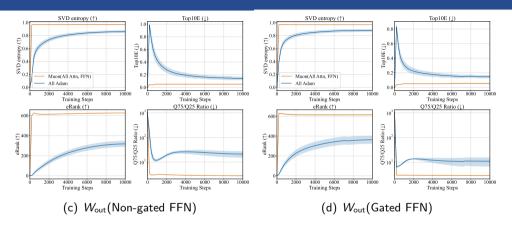
#### Knowledge Acquisition:

 Muon yields more balanced learning across entities and frequencies (head and tail) than Adam.

- Metrics: Based on the singular energy distribution  $q_i = \sigma_i^2/\sum \sigma_j^2$ 
  - SVD entropy:  $H_{\text{norm}} = -\frac{1}{\log n} \sum_{i=1}^{n} q_i \log q_i$ ;
  - **effective rank**:  $eRank = exp(-\sum q_i \log q_i);$
  - Top-k energy: TopE $_k = \frac{\sum_{j=1}^k \sigma_i^2}{\sum_{j=1}^n \sigma_j^2};$
  - $Q_{75}/Q_{25}: Q_{75/25} = \frac{Q_3(\{\sigma_i^2\})}{Q_1(\{\sigma_i^2\})}.$







- From early training, Muon yields more isotropic spectra and seed-stable curves; Adam fluctuates.
- Effects are consistent on VO and FFN (gated and non-gated FFN).

#### **Observation 2: Findings**

#### **Observation Summary**

**Muon** consistently yields more **isotropic weight matrices** with broadly distributed spectral energy than **Adam**, both throughout training and across random initializations, thereby supporting **richer feature representations**.

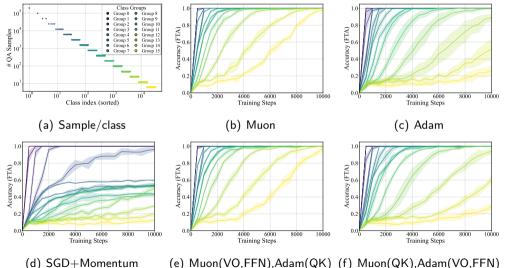
## Observation 3: Muon Acquires Knowledge More Evenly Compared To Adam

 Synthetic QA dataset containing biographical information (e.g., name, birthday, and company) for over 200,000 individuals (Allen-Zhu and Li, 2024); power-law sampling across classes;

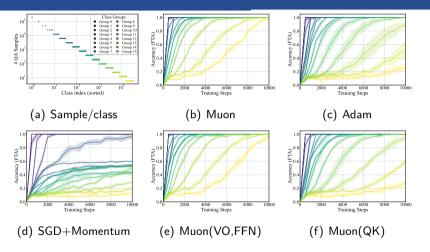
**Ashton Hilda Older** has a birthday that falls on **February 01, 2063**. **Miami, FL** is the birthplace of he. He is an alumnus of **Saddleback College**. He has a **General Literature** education. He works closely with **BlockFi**. For professional growth, he chose to relocate to **Jersey City**.

Metric: First-Token Accuracy (FTA).

## Observation 3: Muon Acquires Knowledge More Evenly Compared To Adam



### Observation 3: Muon Acquires Knowledge More Evenly Compared To Adam



- Head: all optimizers do well; Tail: Muon ≫ Adam with lower variance.
- Muon on VO+FFN retains most gains; QK-only improvement is limited.

#### **Observation 3: Findings**

#### **Observation Summary**

In heavy-tailed, knowledge-intensive tasks, Muon matches Adam's strong performance in the head classes while substantially improving learning on tail classes, narrowing the head-tail gap and accelerating convergence.

Case Study of One-Layer Models

- Learn K triplets  $\{(s_i, r_i, o_i)\}_{i=1}^K$ .
- Embed  $(s_i, r_i)$  to  $E_i \in \mathbb{R}^d$  and  $o_i$  to  $\tilde{E}_i \in \mathbb{R}^d$  for  $i \in [K]$ .

- Learn K triplets  $\{(s_i, r_i, o_i)\}_{i=1}^K$ .
- Embed  $(s_i, r_i)$  to  $E_i \in \mathbb{R}^d$  and  $o_i$  to  $\tilde{E}_i \in \mathbb{R}^d$  for  $i \in [K]$ .
- Queried by  $(s_i, r_i)$ , the network outputs the probability over  $\{o_i\}_{i=1}^K$  as

$$f_{\mathcal{W}}(\mathbf{E_k}) = \operatorname{sm}(\tilde{\mathbf{E}}^{\top} \mathbf{W} \mathbf{E_k}) \in \mathbb{R}^K,$$

where  $E = [E_1, \cdots, E_K] \in \mathbb{R}^{d \times K}$ , and  $\tilde{E} = [\tilde{E}_1, \cdots, \tilde{E}_K] \in \mathbb{R}^{d \times K}$ .

- Learn K triplets  $\{(s_i, r_i, o_i)\}_{i=1}^K$ .
- Embed  $(s_i, r_i)$  to  $E_i \in \mathbb{R}^d$  and  $o_i$  to  $\tilde{E}_i \in \mathbb{R}^d$  for  $i \in [K]$ .
- Queried by  $(s_i, r_i)$ , the network outputs the probability over  $\{o_i\}_{i=1}^K$  as

$$f_{\mathcal{W}}(\mathbf{E_k}) = \operatorname{sm}(\tilde{\mathbf{E}}^{\top} \mathbf{W} \mathbf{E_k}) \in \mathbb{R}^K,$$

where  $E = [E_1, \cdots, E_K] \in \mathbb{R}^{d \times K}$ , and  $\tilde{E} = [\tilde{E}_1, \cdots, \tilde{E}_K] \in \mathbb{R}^{d \times K}$ .

The network is trained with loss

$$\mathcal{L}(W) = -\sum_{k=1}^{K} p_k \log[f_W(E_k)]_k,$$

where  $p_k$  is the frequency or probability of the k-th triplet.

#### **Assumption**

The data frequency imbalance is modeled by two groups, where  $p_k = \alpha/L$  for  $k \in [L]$  and  $p_k = (1 - \alpha)/(K - L)$  for k > L.

Define  $\beta = L/K$ . The dataset is perfectly **balanced** when  $\alpha = \beta$ , and becomes highly **imbalanced** when  $\alpha \ll \beta$  or  $\beta \ll \alpha$ .

#### **Assumption**

The data frequency imbalance is modeled by two groups, where  $p_k = \alpha/L$  for  $k \in [L]$  and  $p_k = (1 - \alpha)/(K - L)$  for k > L.

Define  $\beta = L/K$ . The dataset is perfectly **balanced** when  $\alpha = \beta$ , and becomes highly **imbalanced** when  $\alpha \ll \beta$  or  $\beta \ll \alpha$ .

#### **Assumption**

The embeddings E and  $\tilde{E}$  are orthonormal, i.e.,  $E^{\top}E = \tilde{E}^{\top}\tilde{E} = I_{K,K}$ .

If embeddings are not normalized, this becomes another source of imbalance that **interacts** with the data frequency imbalance.

Vanilla GD:

$$W_{t+1}^{\mathsf{GD}} = W_t^{\mathsf{GD}} - \eta_{t+1} \nabla_W \mathcal{L}(W_t^{\mathsf{GD}}).$$

• Adam with  $\beta_1 = 0, \beta_2 = 0$  (SignGD):

$$W_{t+1}^{\mathsf{SignGD}} = W_t^{\mathsf{SignGD}} - \eta_{t+1} \operatorname{sign} \left( \nabla_W \mathcal{L}(W_t^{\mathsf{SignGD}}) \right).$$

• Muon with  $\mu = 0$ :

$$W_{t+1}^{\mathsf{Muon}} = W_t^{\mathsf{Muon}} - \eta_{t+1} U_t \mathsf{norm}(\Sigma_t) V_t^{ op},$$

where  $\operatorname{norm}(\cdot)$  normalizes all non-zero elements to 1 (element-wise), and  $\nabla_W \mathcal{L}(W_t^{\mathsf{Muon}}) = U_t \Sigma_t V_t^{\mathsf{T}}$  is the SVD of the gradient.

Intuitions recall:

Muon is spectral-wise normalized, while Adam is element-wise normalized.

#### **Intuitions** recall:

Muon is spectral-wise normalized, while Adam is element-wise normalized.

#### Embedding settings:

- Support-decoupled:  $Supp(E_i)/Supp(\tilde{E}_i)$  are **disjoint** for different i, e.g., one-hot bases.
- Support-coupled: Supports may **overlap**, e.g., general unitary matrix.

#### Intuitions recall:

Muon is spectral-wise normalized, while Adam is element-wise normalized.

#### Embedding settings:

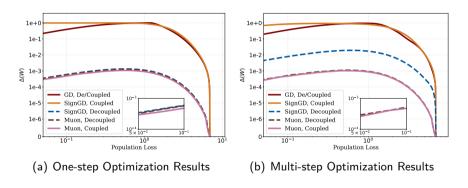
- Support-decoupled:  $Supp(E_i)/Supp(\tilde{E}_i)$  are **disjoint** for different i, e.g., one-hot bases.
- Support-coupled: Supports may **overlap**, e.g., general unitary matrix.

#### Optimizer settings:

- One-step: Take a single update with a scaled step size.
- Multi-step: Take multiple updates.

Imbalance metric: maximal probability gap  $\Delta(W) = \max_{i,j \in [K]} [f_W(E_i)]_i - [f_W(E_j)]_j$ ,

Imbalance metric: maximal probability gap  $\Delta(W) = \max_{i,j \in [K]} [f_W(E_i)]_i - [f_W(E_j)]_j$ ,



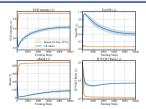
- Muon consistently achieves balanced learning across all items for any embeddings.
- Adam's ability to learn balanced items depends on the properties of the embeddings.

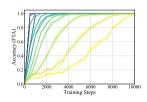
## Theorem (Informal)

■ **Muon:** near-isotropic updates  $\Rightarrow$  worst-class prob  $\gtrsim 1 - \varepsilon \left(1 + \mathcal{O}\left(\frac{\log K}{K}\right)\right)$  once the best class hits  $1 - \varepsilon$ . Imbalance:  $\tilde{O}(\varepsilon \log K/K)$ 

## Theorem (Informal)

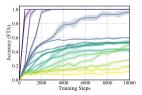
■ **Muon:** near-isotropic updates  $\Rightarrow$  worst-class prob  $\gtrsim 1 - \varepsilon \left(1 + \mathcal{O}\left(\frac{\log K}{K}\right)\right)$  once the best class hits  $1 - \varepsilon$ . Imbalance:  $\tilde{O}(\varepsilon \log K/K)$ 





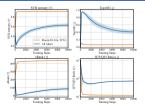
- **Muon:** near-isotropic updates  $\Rightarrow$  worst-class prob  $\gtrsim 1 \varepsilon \left(1 + \mathcal{O}\left(\frac{\log K}{K}\right)\right)$  once the best class hits  $1 \varepsilon$ . Imbalance:  $\tilde{O}(\varepsilon \log K/K)$
- **GD:** imbalance controlled by  $r(\alpha, \beta) < 1$ ; worst-class prob can be  $O(\varepsilon^{-r}K^{r-1})$ . Imbalance:  $1 \varepsilon O(\varepsilon^{-r}K^{r-1})$

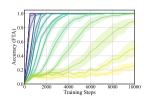
- **Muon:** near-isotropic updates  $\Rightarrow$  worst-class prob  $\gtrsim 1 \varepsilon \left(1 + \mathcal{O}\left(\frac{\log K}{K}\right)\right)$  once the best class hits  $1 \varepsilon$ . Imbalance:  $\tilde{O}(\varepsilon \log K/K)$
- **GD:** imbalance controlled by  $r(\alpha, \beta) < 1$ ; worst-class prob can be  $O(\varepsilon^{-r}K^{r-1})$ . Imbalance:  $1 \varepsilon O(\varepsilon^{-r}K^{r-1})$



- **Muon:** near-isotropic updates  $\Rightarrow$  worst-class prob  $\gtrsim 1 \varepsilon \left(1 + \mathcal{O}\left(\frac{\log K}{K}\right)\right)$  once the best class hits  $1 \varepsilon$ . Imbalance:  $\tilde{O}(\varepsilon \log K/K)$
- **GD:** imbalance controlled by  $r(\alpha, \beta) < 1$ ; worst-class prob can be  $O(\varepsilon^{-r}K^{r-1})$ . Imbalance:  $1 \varepsilon O(\varepsilon^{-r}K^{r-1})$
- Adam: embedding-dependent; can match Muon (disjoint supports) or degrade (overlap), with spectral decay.

- **Muon:** near-isotropic updates  $\Rightarrow$  worst-class prob  $\gtrsim 1 \varepsilon \left(1 + \mathcal{O}\left(\frac{\log K}{K}\right)\right)$  once the best class hits  $1 \varepsilon$ . Imbalance:  $\tilde{O}(\varepsilon \log K/K)$
- **GD:** imbalance controlled by  $r(\alpha, \beta) < 1$ ; worst-class prob can be  $O(\varepsilon^{-r}K^{r-1})$ . Imbalance:  $1 \varepsilon O(\varepsilon^{-r}K^{r-1})$
- Adam: embedding-dependent; can match Muon (disjoint supports) or degrade (overlap), with spectral decay.





# Why aligned with associative memory? (intuition)

- Gradient  $G = U\Sigma V^{\top} = \sum_{i} \sigma_{i} u_{i} v_{i}^{\top}$ ; Muon uses  $UV^{\top} = \sum_{i} u_{i} v_{i}^{\top}$ : equal-magnitude updates per orthogonal outer product.
- Linear memory  $W = \sum_i e_{o_i} e_{s_i}^{\top}$ ; singular values encode frequency; Muon **equalizes** learning rates across head/tail facts.
- Adam's elementwise normalization may disrupt matrix structure ⇒ imbalance & spectral concentration.

## **Summary**

## **Takeaway**

Muon's spectral-normalized updates align with the outer-product form of linear associative memory, delivering isotropic spectra and balanced tail learning. VO+FFN is the main battleground.

# Relationship to Other Understandings and Phenomena

- Bernstein and Newhouse (2024): Muon and Adam are steepest gradient descents with respect to the operator norm and vector inf norm, respectively.
  - ightarrow One way to explain why the operator norm is better than the vector inf norm.

# Relationship to Other Understandings and Phenomena

- Bernstein and Newhouse (2024): Muon and Adam are steepest gradient descents with respect to the operator norm and vector inf norm, respectively.
  - ightarrow One way to explain why the operator norm is better than the vector inf norm.
- Zhang et al. (2025): Adopt Muon for online memory updating in RNNs.
  - $\rightarrow$  Another evidence to support Muon's superiority in memory structure.

## Relationship to Other Understandings and Phenomena

- Bernstein and Newhouse (2024): Muon and Adam are steepest gradient descents with respect to the operator norm and vector inf norm, respectively.
  - ightarrow One way to explain why the operator norm is better than the vector inf norm.
- Zhang et al. (2025): Adopt Muon for online memory updating in RNNs.
  - ightarrow Another evidence to support Muon's superiority in memory structure.
- The exploration and exploitation view in ZhiHu
  - ightarrow Effective learning on the tail classes can be viewed as exploration.

 $Thanks\ for\ listening!$ 

## References

- Allen-Zhu, Z. and Li, Y. (2024). Physics of language models: Part 3.3, knowledge capacity scaling laws. *arXiv preprint arXiv:2404.05405*.
- Bernstein, J. and Newhouse, L. (2024). Old optimizer, new norm: An anthology. arXiv preprint arXiv:2409.20325.
- Bietti, A., Cabannes, V., Bouchacourt, D., Jegou, H., and Bottou, L. (2023). Birth of a transformer: A memory viewpoint. *Advances in Neural Information Processing Systems*, 36:1560–1588.

#### References ii

- Jordan, K., Jin, Y., Boza, V., Jiacheng, Y., Cecista, F., Newhouse, L., and Bernstein, J. (2024). Muon: An optimizer for hidden layers in neural networks, 2024. *URL https://kellerjordan.github.io/posts/muon*, 6.
- Kimi, T. (2025). Kimi k2: Open agentic intelligence. arXiv preprint arXiv:2507.20534.
- Meng, K., Bau, D., Andonian, A., and Belinkov, Y. (2022). Locating and editing factual associations in gpt. *Advances in neural information processing systems*, 35:17359–17372.
- Zhang, T., Bi, S., Hong, Y., Zhang, K., Luan, F., Yang, S., Sunkavalli, K., Freeman, W. T., and Tan, H. (2025). Test-time training done right. arXiv preprint arXiv:2505.23884.