Give me FP32 or give me death?
On the Impact of Numerical Precision to
Reasoning Evaluation

Jiayi Yuan’ Hao Li? Xinheng Ding? Wenya Xie? Yu-Jhe Li3

. 3 3 3 VWi 17irui | 2
Wentian Zhao® Kun Wan? Jing Shi® Xia Hu' Zirui Liu Code

[=] [=]

;IR | M: I\ Adobe m i ﬁ'

Research Questions Covered in this Talk

Numerical stability 1s a long standing problem, why reasoning
model is much more sensitive to them compared to others?
What factors impact the final results and introduce extra variance?

What are the potential solutions to this problem?

Suggestions

e Ifuse greedy decoding for token-level reproducibility, run it in

FP32 (Unlike final acc, token length is extremely sensitive) !

e For top-p/top-k or other random sampling based method,
o Run it with more trials, especially for smaller dataset like
AIME/AMC. We suggest at least 16 trials for small datasets.
o Report std & error bar

Talk Outline

——> e Background on the Numerical Precision
e Our key findings and suggestions on the reasoning eval.

e Why reasoning model is so sensitive?

IEEE 754 Data Format

e TL;DR: # Exponent bits control the numerical range, # Mantissa

bits control the “precision”

IEEE 754 Single Precision 32-bit Float (IEEE FP32)

ojojojojojojojojojoj1jojojojojojojojojt1j1y|1j]o0

Sign: 1 Bit Exponent: 8 Bits 23 Bits
IEEE 754 Half Precision 16-bit Float (IEEE FP16)

ojojojojojojojo}|oO]|1

Sign: 1 Bit Exponent: 5 Bits 10 Bits Value = (_1)Sign x(1+) X 2Exponent - bias
Google Brain Float (BFloat16 or BF16) :

Sign: 1 Bit Exponent: 8 Bits 7 Bits

Low Precision Inference is the common Practice

e Lower Precision, higher Throughput (almost linear)

Technical Specifications

H100 SXM H100 NVL
FP64 34 teraFLOPS 30 teraFLOPS
FP64 Tensor Core 67 teraFLOPS 60 teraFLOPS
FP32 67 teraFLOPS 60 teraFLOPS
TF32 Tensor Core* 989 teraFLOPS 835 teraFLOPS
BFLOAT16 Tensor Core* 1,979 teraFLOPS 1,671 teraFLOPS
FP16 Tensor Core* 1,979 teraFLOPS 1,671 teraFLOPS
FP8 Tensor Core* 3,958 teraFLOPS 3,341 teraFLOPS
INT8 Tensor Core* 3,958 TOPS 3,341 TOPS

https://resources.nvidia.com/en-us-gpu-resources/h100-datasheet-24306 °

Floating Point Arithmetic is not Associative

e Because rounding errors (@ +b) + ¢ # a + (b+ ¢)

® One Interesting Rounding Error Example:

Pytorch 2.6.0

>>>import torch

>>>a = torch.tensor(8.125, dtype=torch.floatl6)
>>>b = torch.tensor (1032, dtype=torch.float16)
>>>a + 1024 ==

tensor(True)

https://zirui-ray-liu.github.io/blog/2024/rounding-error/

Many Existing Efforts

e Algorithm Side:
o Kahan Summation, Exact Dot Product Accumulator

e Hardware Side: CUDA FMA

2.3. The Fused Multiply-Add (FMA)

In 2008 the IEEE 754 standard was revised to include the fused multiply-add operation (EMA). The FMA operation computes rn(X x Y + Z) with
onlyi one rounding step.| Without the FMA operation the result would have to be computed as rn (rn(X x Y') + Z) with two rounding steps, one
for multiply and one for add. Because the FMA uses only a single rounding step the result is computed more accurately.

https://docs.nvidia.com/cuda/floating-point/index.html

Accuracy
© o © © o
N w i w (o)}

9
=

But Still...

Huge Extra Variance Caused by Numerical Issues

o TL; DR: Changing the eval. batch size/GPU count/GPU

version change models’ results under greedy decoding

BFloatl6 AIME'24

o M DeepSeek-R1-Distill-Llama-88
BN DeepSeek-R1-Distill-Qwen-78
BN Llama-3.1-8B-Instruct
B Qwen2.5-7B-Instruct

-

Question: "Let A, $BS, C, and D be point on the hyperbola:
" | Find the greatest real number that is less than $BD*2$ for all such rhombi."

Greedy, Seed=42, BS=32, #GPU=4

[]
Okay, so | have this problem ... perpendicular, but in a square,
/ ... for all such rhombi is \(\\boxed{480}\).

@ .
BF16
o
\ Okay, so | have this problem ... perpendicular. Wait, no, hold on,

Greedy, Seed=42, BS=8, #GPU=4

Outline

e Background on the Numerical Precision
—— e Our key findings and suggestions on the reasoning eval.

e Why reasoning model is so sensitive?

10

LLM Decoding Strategy

(Deterministic) Greedy decoding: choose token with highest prob.
(Random)Top-p/nucleus sampling: Set a threshold p and sample
from the top tokens with cumulative probability <p

(Random) Top-k sampling: Set a threshold k and only sample from
the top-k tokens

11

Commonly Adopted Evaluation Strategy

e For greedy decoding, report single run Acc.

e For random sampling based method, report Avg. Acc/Pass@1

12

Our Experimental Setting

e We change the # of GPUs, GPU version, and eval. batch size
o Changing these factors will impact the micro-level token
scheduler, underlying kernel selection & implementation, thus

changing the floating point arithmetic orders

e System: vLLM 0.8.2

13

Our Challenge to Existing Evaluation Strategy

e For greedy decoding, report single run Acc.
o We show that hardware and sys config (GPU version/TP
size/Eval. BS), can significantly change the acc. (often ~2%,
for AIME, 9%)
e For random sampling based method, report Avg. Acc/Pass@1
o We show that hardware and sys config (GPU version/TP
size/Eval. BS), can introduce extra 0.3-2% variance

o And it is harmful when researcher doesn’t report error bars!

Our Challenge to Existing Evaluation Strategy

e For greedy decoding, report single run Acc.

o GPU version/Counts/Eval. BS, can significantly change the

acc. (often ~2%, for AIME, 9%)

o Suggest: If you still keep token-level reproducibility, use FP32

AIME’24 MATHS00
BF16 FP16 FP32 BF16 FP16 FP32
DeepSeek-R1-Distill-Qwen-7B 9.15% 5.74% 0 1.04% 1.12% 0.12%
DeepSeek-R1-Distill-Llama-8B 4.60% 6.00% 5.8e-17 159% 0.73% 0.23%
Qwen2.5-7B-Instruct 1.71% 1.45e-17 1.45e-17 0.83% 0.36% 1.16e-16
Llama-3.1-8B-Instruct 1.92% 1.30% 0 094% 0.34% 0.13% 15

Our Challenge to Existing Evaluation Strategy

e For random sampling based method, report Avg. Acc/Pass@ 1

o GPU version/counts/Eval. BS), can introduce extra 0.3-2%

variance

o Suggest: run it with more trials! Report both Acc & Error bars

MATHS00 (n=4) AIME’24 (n=16) AIME’24 (n=64)
BF16 FPl16 FP32 BFl16 FP16 FP32 BF16 FP16 FP32
DeepSeek-R1-Distill-Qwen-7B 0.3158 0.1463 0.1021 1.7151 0.8273 1.1785 0.3749 0.5391 0.7377
DeepSeek-R1-Distill-Llama-8B 0.3602 0.3371 0.1211 1.5124 1.8792 0.8606 0.8774 0.8539 0.5034
Qwen2.5-7B-Instruct 04663 0.1686 0.0274 0.7056 0.2523 0 0.1784 0.1382 0
Llama-3.1-8B-Instruct 0.6020 0.1725 0.3293 0.5992 0.2282 0.7759 04216 0.2898 0.1296

Our Challenge to Existing Evaluation Strategy

e Why a Extra 0.3-2% std. 1s concerning to me:

o On small datasets like AIME/AMC, 16 runs are with ~2% variance

purely from hardware/sys; 4—8 runs are definitely more random

o 95% conf. Interval requires 2 sigma acc.

m Ifstd. from hardware is 2%. you need at least 4% acc. T

MATHS00 (n=4) AIME’24 (n=16) AIME’24 (n=64)
BF16 FPl16 FP32 BFl16 FP16 FP32 BF16 FP16 FP32
DeepSeek-R1-Distill-Qwen-7B 0.3158 0.1463 0.1021 1.7151 0.8273 1.1785 0.3749 0.5391 0.7377
DeepSeek-R1-Distill-Llama-8B 0.3602 0.3371 0.1211 1.5124 1.8792 0.8606 0.8774 0.8539 0.5034
Qwen2.5-7B-Instruct 04663 0.1686 0.0274 0.7056 0.2523 0 0.1784 0.1382 0
Llama-3.1-8B-Instruct 06020 0.1725 03293 05992 02282 07759 04216 02898 0.1296

Summary

e For greedy decoding, report single run Acc.
o Hardware and sys config (GPU version/Counts/Eval. BS), can
significantly change the acc. (often ~2%, for AIME, 9%)
e For random sampling based method, report Avg. Acc/Pass@ 1
o Hardware and sys config (GPU version/TP size/Eval. BS), can
introduce extra 0.3-2% variance

o And it 1s harmful when researcher doesn’t report error bars!

18

Suggestions

e Ifuse greedy decoding for token-level reproducibility, run it in

FP32

e For random sampling based method,
o Run it with more trials, especially for smaller dataset like
AIME/AMC. We suggest at least 16 trials

o Report std & error bars

19

Outline

e Background on the Numerical Precision
e Our key findings and suggestions on the reasoning eval.

——>e Why reasoning model is so sensitive?

20

Reasoning is more sensitive

e In all our experiments, we find

o Reasoning model 1s much more sensitive to numerical errors

o It makes sense since they generate more tokens,

AIME’24 MATHS00
BF16 FP16 FP32 BF16 FP16 FP32
DeepSeek-R1-Distill-Qwen-7B 9.15% 5.74% 0 1.04% 1.12% 0.12%
DeepSeek-R1-Distill-Llama-8B 4.60% 6.00% 58e-17 159% 0.73% 0.23%
Qwen2.5-7B-Instruct 1.71% 1.45e-17 1.45e-17 0.83% 0.36% 1.16e-16
Llama-3.1-8B-Instruct 1.92% 1.30% 0 094% 034% 0.13%

21

Analysis: Why Reasoning is more sensitive?

e Motivating Example: Token Distribution that 1s extremely
numerical Robust — One Hot
o Small Rounding Error cannot change much in this case, no

matter in Top-P sampling/Greedy decoding

Probability

22

Analysis: Why Reasoning is more sensitive?

e Motivating Example: For Reasoning Model, this 1s often the case:
o Many token’s prob. is very close to each other
m In greedy decoding, small rounding error change the rank.
m Similarly, top-K/top-P sampling may exclude/include extra tailing

tokens

Probability

23

Analysis: Why Reasoning is more sensitive?

® One Concrete example in Greedy decoding

Answer 1 Answer 2
Token Prob. Token Prob.

know 49.75% | have 46.65%

have 4391% | know 46.64%
need 3.18% need 3.39% é‘
‘m 2.47% ‘m 2.63% -
‘ve 0.49% ‘ve 0.52% o
o

24

My hypothesis: This is not a bug, but a feature

e During RL/SFT, we have many high-entropy minority tokens
e This makes sense because in this way, we can increase the answer

diversity and get better rewards in RL

25

Research Questions Covered in this Talk

Numerical stability 1s a long standing problem, why reasoning
model is much more sensitive to them compared to others?

o High Entropy of some minority tokens

What factors impact the final results and introduce extra variance?
o GPU version, counts, batch size
What are the potential solutions to this problem?

o Token-level reproducibility, use FP32

o For Random sampling, Run it with more trials & report std!

26

