
Give me FP32 or give me death?
On the Impact of Numerical Precision to 

Reasoning Evaluation

1

Jiayi Yuan¹ Hao Li² Xinheng Ding² Wenya Xie² Yu-Jhe Li³
Wentian Zhao³ Kun Wan³ Jing Shi³ Xia Hu¹ Zirui Liu²

321

Code



Research Questions Covered in this Talk 

● Numerical stability is a long standing problem, why reasoning 

model is much more sensitive to them compared to others?

● What factors impact the final results and introduce extra variance?

● What are the potential solutions to this problem?

2



Suggestions

● If use greedy decoding for token-level reproducibility, run it in 

FP32 (Unlike final acc, token length is extremely sensitive) !

● For top-p/top-k or other random sampling based method, 

○ Run it with more trials, especially for smaller dataset like 

AIME/AMC. We suggest at least 16 trials for small datasets.

○ Report std & error bar
3



Talk Outline

● Background on the Numerical Precision 

● Our key findings and suggestions on the reasoning eval.

● Why reasoning model is so sensitive?

4



IEEE 754 Data Format

5

● TL;DR: # Exponent bits control the numerical range, # Mantissa 

bits control the “precision”



Low Precision Inference is the common Practice

6https://resources.nvidia.com/en-us-gpu-resources/h100-datasheet-24306

● Lower Precision, higher Throughput (almost linear)



Floating Point Arithmetic is not Associative

7

● Because rounding errors

● One Interesting Rounding Error Example:

https://zirui-ray-liu.github.io/blog/2024/rounding-error/

Pytorch 2.6.0



Many Existing Efforts

8

● Algorithm Side: 

○ Kahan Summation, Exact Dot Product Accumulator

● Hardware Side: CUDA FMA

https://docs.nvidia.com/cuda/floating-point/index.html



But Still…

9

● Huge Extra Variance Caused by Numerical Issues

○ TL; DR: Changing the eval. batch size/GPU count/GPU 

version change models’ results under greedy decoding



Outline

● Background on the Numerical Precision 

● Our key findings and suggestions on the reasoning eval.

● Why reasoning model is so sensitive?

10



LLM Decoding Strategy

● (Deterministic) Greedy decoding: choose token with highest prob. 

● (Random )Top-p/nucleus sampling: Set a threshold p and sample 

from the top tokens with cumulative probability < p

● (Random) Top-k sampling: Set a threshold k and only sample from 

the top-k tokens 

11



Commonly Adopted Evaluation Strategy

● For greedy decoding, report single run Acc.

● For random sampling based method, report Avg. Acc/Pass@1

12



Our Experimental Setting

● We change the # of GPUs, GPU version, and eval. batch size

○ Changing these factors will impact the micro-level token 

scheduler, underlying kernel selection & implementation, thus 

changing the floating point arithmetic orders

● System: vLLM 0.8.2

13



Our Challenge to Existing Evaluation Strategy

● For greedy decoding, report single run Acc.

○ We show that hardware and sys config (GPU version/TP 

size/Eval. BS), can significantly change the acc. (often ~2%, 

for AIME, 9%)

● For random sampling based method, report Avg. Acc/Pass@1

○ We show that hardware and sys config (GPU version/TP 

size/Eval. BS), can introduce extra 0.3-2% variance

○ And it is harmful when researcher doesn’t report error bars! 14



Our Challenge to Existing Evaluation Strategy

● For greedy decoding, report single run Acc.

○ GPU version/Counts/Eval. BS, can significantly change the 

acc. (often ~2%, for AIME, 9%)

○ Suggest: If you still keep token-level reproducibility, use FP32

15



Our Challenge to Existing Evaluation Strategy

● For random sampling based method, report Avg. Acc/Pass@1

○ GPU version/counts/Eval. BS), can introduce extra 0.3-2% 

variance

○ Suggest: run it with more trials! Report both Acc & Error bars

16



Our Challenge to Existing Evaluation Strategy

● Why a Extra 0.3-2% std. is concerning to me:

○ On small datasets like AIME/AMC, 16 runs are with ~2% variance 

purely from hardware/sys; 4–8 runs are definitely more random

○ 95% conf. Interval requires 2 sigma acc. 

■ If std. from hardware is 2%, you need at least 4% acc.↑

■

17



Summary

● For greedy decoding, report single run Acc.

○ Hardware and sys config (GPU version/Counts/Eval. BS), can 

significantly change the acc. (often ~2%, for AIME, 9%)

● For random sampling based method, report Avg. Acc/Pass@1

○ Hardware and sys config (GPU version/TP size/Eval. BS), can 

introduce extra 0.3-2% variance

○ And it is harmful when researcher doesn’t report error bars!
18



Suggestions

● If use greedy decoding for token-level reproducibility, run it in 

FP32

● For random sampling based method, 

○ Run it with more trials, especially for smaller dataset like 

AIME/AMC. We suggest at least 16 trials

○ Report std & error bars
19



Outline

● Background on the Numerical Precision 

● Our key findings and suggestions on the reasoning eval.

● Why reasoning model is so sensitive?

20



Reasoning is more sensitive

21

● In all our experiments, we find

○ Reasoning model is much more sensitive to numerical errors

○ It makes sense since they generate more tokens,



Analysis: Why Reasoning is more sensitive?

22

● Motivating Example: Token Distribution that is extremely 

numerical Robust – One Hot

○ Small Rounding Error cannot change much in this case, no 

matter in Top-P sampling/Greedy decoding



Analysis: Why Reasoning is more sensitive?

23

● Motivating Example: For Reasoning Model, this is often the case:

○ Many token’s prob. is very close to each other

■ In greedy decoding, small rounding error change the rank.

■ Similarly, top-K/top-P sampling may exclude/include extra tailing 

tokens



Analysis: Why Reasoning is more sensitive?

24

● One Concrete example in Greedy decoding



My hypothesis: This is not a bug, but a feature

25

● During RL/SFT, we have many high-entropy minority tokens

● This makes sense because in this way, we can increase the answer 

diversity and get better rewards in RL



Research Questions Covered in this Talk 

● Numerical stability is a long standing problem, why reasoning 

model is much more sensitive to them compared to others?

○ High Entropy of some minority tokens

● What factors impact the final results and introduce extra variance?

○ GPU version, counts, batch size

● What are the potential solutions to this problem?

○ Token-level reproducibility, use FP32

○ For Random sampling, Run it with more trials & report std! 26


