Give me FP32 or give me death? On the Impact of Numerical Precision to Reasoning Evaluation

Jiayi Yuan¹ Hao Li² Xinheng Ding² Wenya Xie² Yu-Jhe Li³ Wentian Zhao³ Kun Wan³ Jing Shi³ Xia Hu¹ Zirui Liu²

Code

Research Questions Covered in this Talk

- Numerical stability is a long standing problem, why reasoning model is much more sensitive to them compared to others?
- What factors impact the final results and introduce extra variance?
- What are the potential solutions to this problem?

Suggestions

• If use greedy decoding for token-level reproducibility, run it in FP32 (Unlike final acc, token length is extremely sensitive) !

- For top-p/top-k or other random sampling based method,
 - Run it with more trials, especially for smaller dataset like
 AIME/AMC. We suggest at least 16 trials for small datasets.
 - Report std & error bar

Talk Outline

Background on the Numerical Precision

- Our key findings and suggestions on the reasoning eval.
- Why reasoning model is so sensitive?

IEEE 754 Data Format

• TL;DR: # Exponent bits control the numerical range, # Mantissa

bits control the "precision"

IEEE 754 Single Precision 32-bit Float (IEEE FP32)

Low Precision Inference is the common Practice

• Lower Precision, higher Throughput (almost linear)

Technical Specifications					
	H100 SXM	H100 NVL			
FP64	34 teraFLOPS	30 teraFLOPS			
FP64 Tensor Core	67 teraFLOPS	60 teraFLOPS			
FP32	67 teraFLOPS	60 teraFLOPS			
TF32 Tensor Core*	989 teraFLOPS	835 teraFLOPS			
BFLOAT16 Tensor Core*	1,979 teraFLOPS	1,671 teraFLOPS			
FP16 Tensor Core*	1,979 teraFLOPS	1,671 teraFLOPS			
FP8 Tensor Core*	3,958 teraFLOPS	3,341 teraFLOPS			
INT8 Tensor Core*	3,958 TOPS	3,341 TOPS			

https://resources.nvidia.com/en-us-gpu-resources/h100-datasheet-24306 ⁶

Floating Point Arithmetic is not Associative

• Because rounding errors $(a+b) + c \neq a + (b+c)$

• One Interesting Rounding Error Example:

Pytorch 2.6.0

```
>>import torch
>>>a = torch.tensor(8.125, dtype=torch.float16)
>>>b = torch.tensor(1032, dtype=torch.float16)
>>>a + 1024 == b
tensor(True)
```

https://zirui-ray-liu.github.io/blog/2024/rounding-error/

Many Existing Efforts

- Algorithm Side:
 - Kahan Summation, Exact Dot Product Accumulator
- Hardware Side: CUDA FMA

2.3. The Fused Multiply-Add (FMA)

In 2008 the IEEE 754 standard was revised to include the fused multiply-add operation (**FMA**). The **FMA** operation computes $rn(X \times Y + Z)$ with only one rounding step. Without the **FMA** operation the result would have to be computed as $rn(rn(X \times Y) + Z)$ with two rounding steps, one for multiply and one for add. Because the **FMA** uses only a single rounding step the result is computed more accurately.

But Still...

- Huge Extra Variance Caused by Numerical Issues
 - TL; DR: Changing the eval. batch size/GPU count/GPU

version change models' results under greedy decoding

Outline

- Background on the Numerical Precision
- Our key findings and suggestions on the reasoning eval.
 - Why reasoning model is so sensitive?

LLM Decoding Strategy

- (Deterministic) Greedy decoding: choose token with highest prob.
- (Random)Top-p/nucleus sampling: Set a threshold p and sample from the top tokens with cumulative probability < p
- (Random) Top-k sampling: Set a threshold k and only sample from the top-k tokens

Commonly Adopted Evaluation Strategy

- For greedy decoding, report single run Acc.
- For random sampling based method, report Avg. Acc/Pass@1

Our Experimental Setting

- We change the # of GPUs, GPU version, and eval. batch size
 - Changing these factors will impact the micro-level token
 scheduler, underlying kernel selection & implementation, thus
 changing the floating point arithmetic orders
- System: vLLM 0.8.2

- For greedy decoding, report single run Acc.
 - We show that hardware and sys config (GPU version/TP size/Eval. BS), can significantly change the acc. (often ~2%, for AIME, 9%)
- For random sampling based method, report Avg. Acc/Pass@1
 - We show that hardware and sys config (GPU version/TP size/Eval. BS), can introduce extra 0.3-2% variance
 - And it is harmful when researcher doesn't report error bars!

14

- For greedy decoding, report single run Acc.
 - GPU version/Counts/Eval. BS, can significantly change the acc. (often ~2%, for AIME, 9%)
 - Suggest: If you still keep token-level reproducibility, use FP32

		AIME'24	l.	MATH500			
	BF16	FP16	FP32	BF16	FP16	FP32	
DeepSeek-R1-Distill-Qwen-7B	9.15%	5.74%	0	1.04%	1.12%	0.12%	
DeepSeek-R1-Distill-Llama-8B	4.60%	6.00%	5.8e-17	1.59%	0.73%	0.23%	
Qwen2.5-7B-Instruct	1.71%	1.45e-17	1.45e-17	0.83%	0.36%	1.16e-16	
Llama-3.1-8B-Instruct	1.92%	1.30%	0	0.94%	0.34%	0.13%	

- For random sampling based method, report Avg. Acc/Pass@1
 - GPU version/counts/Eval. BS), can introduce extra 0.3-2%
 variance
 - Suggest: run it with more trials! Report both Acc & Error bars

	MATH500 (n=4)			AIME'24 (n=16)			AIME'24 (n=64)		
	BF16	FP16	FP32	BF16	FP16	FP32	BF16	FP16	FP32
DeepSeek-R1-Distill-Qwen-7B	0.3158	0.1463	0.1021	1.7151	0.8273	1.1785	0.3749	0.5391	0.7377
DeepSeek-R1-Distill-Llama-8B	0.3602	0.3371	0.1211	1.5124	1.8792	0.8606	0.8774	0.8539	0.5034
Qwen2.5-7B-Instruct	0.4663	0.1686	0.0274	0.7056	0.2523	0	0.1784	0.1382	0
Llama-3.1-8B-Instruct	0.6020	0.1725	0.3293	0.5992	0.2282	0.7759	0.4216	0.2898	0.1296

- Why a Extra 0.3-2% std. is concerning to me:
 - On small datasets like AIME/AMC, 16 runs are with ~2% variance purely from hardware/sys; 4–8 runs are definitely more random
 - 95% conf. Interval requires 2 sigma acc.

	MA	TH500 (r	n=4)	AIN	/IE'24 (n=	=16)	AIN	/IE'24 (n=	=64)
	BF16	FP16	FP32	BF16	FP16	FP32	BF16	FP16	FP32
DeepSeek-R1-Distill-Qwen-7B	0.3158	0.1463	0.1021	1.7151	0.8273	1.1785	0.3749	0.5391	0.7377
DeepSeek-R1-Distill-Llama-8B	0.3602	0.3371	0.1211	1.5124	1.8792	0.8606	0.8774	0.8539	0.5034
Qwen2.5-7B-Instruct	0.4663	0.1686	0.0274	0.7056	0.2523	0	0.1784	0.1382	0
Llama-3.1-8B-Instruct	0.6020	0.1725	0.3293	0.5992	0.2282	0.7759	0.4216	0.2898	0.1296

■ If std. from hardware is 2%, you need at least 4% acc. ↑

Summary

- For greedy decoding, report single run Acc.
 - Hardware and sys config (GPU version/Counts/Eval. BS), can significantly change the acc. (often ~2%, for AIME, 9%)
- For random sampling based method, report Avg. Acc/Pass@1
 - Hardware and sys config (GPU version/TP size/Eval. BS), can introduce extra 0.3-2% variance
 - And it is harmful when researcher doesn't report error bars!

Suggestions

• If use greedy decoding for token-level reproducibility, run it in FP32

- For random sampling based method,
 - Run it with more trials, especially for smaller dataset like AIME/AMC. We suggest at least 16 trials
 - Report std & error bars

Outline

- Background on the Numerical Precision
- Our key findings and suggestions on the reasoning eval.
- → Why reasoning model is so sensitive?

Reasoning is more sensitive

- In all our experiments, we find
 - Reasoning model is much more sensitive to numerical errors
 - It makes sense since they generate more tokens,

		AIME'24	1	MATH500			
	BF16	FP16	FP32	BF16	FP16	FP32	
DeepSeek-R1-Distill-Qwen-7B	9.15%	5.74%	0	1.04%	1.12%	0.12%	
DeepSeek-R1-Distill-Llama-8B	4.60%	6.00%	5.8e-17	1.59%	0.73%	0.23%	
Qwen2.5-7B-Instruct	1.71%	1.45e-17	1.45e-17	0.83%	0.36%	1.16e-16	
Llama-3.1-8B-Instruct	1.92%	1.30%	0	0.94%	0.34%	0.13%	

Analysis: Why Reasoning is more sensitive?

- Motivating Example: Token Distribution that is extremely numerical Robust One Hot
 - Small Rounding Error cannot change much in this case, no matter in Top-P sampling/Greedy decoding

Analysis: Why Reasoning is more sensitive?

- Motivating Example: For Reasoning Model, this is often the case:
 - Many token's prob. is very close to each other
 - In greedy decoding, small rounding error change the rank.
 - Similarly, top-K/top-P sampling may exclude/include extra tailing tokens

Analysis: Why Reasoning is more sensitive?

• One Concrete example in Greedy decoding

Ans	wer 1	Ans	wer 2	
Token	Prob.	Token	Prob.	
know	49.75%	have	46.65%	
have	43.91%	know	46.64%	
need	3.18%	need	3.39%	lity
'n	2.47%	'm	2.63%	abi
've	0.49%	've	0.52%	ġ
				E

My hypothesis: This is not a bug, but a feature

- During RL/SFT, we have many high-entropy minority tokens
- This makes sense because in this way, we can increase the answer diversity and get better rewards in RL

Research Questions Covered in this Talk

- Numerical stability is a long standing problem, why reasoning model is much more sensitive to them compared to others?
 - High Entropy of some minority tokens
- What factors impact the final results and introduce extra variance?
 - GPU version, counts, batch size
- What are the potential solutions to this problem?
 - Token-level reproducibility, use FP32
 - For Random sampling, Run it with more trials & report std!