). PENCIL: Long Thoughts with Short Memory

Chenxiao Yang

CASATY
May 2¥th, 2028

Nathawn Srebro David McAllesker

Chain-of-Thought (CoT)

Q: Sammy wanted to go to
where the people were. Where
might he go?

Options: (a) race track (b)
populated areas (c) desert (d)
apartment (e) roadblock

A:

So the answer is (b).

J

Q: Yes or no: Would a pear sink
in water?

-

So the answer is no.

)

Q: The concert was scheduled to
be on 06/01/1943, but was
delayed by one day to today.
What is the date 10 days ago in
MM/DD/YYYY?

A:

So the
answer is 05/23/1943.

Chain-of-Thought generates a series of thoughts before providing

the final answer.

The Power of Long CoT

O SERIES PERFORMANCE / ARC-AGI SEMI-PRIVATE EVAL sl: Slmple test-time scaling
~ ® STEM GRAD I
O R (TUNED)Si/O Niklas Muennighoff “! 34 Zitong Yang ™! Weijia Shi“?> Xiang Lisa Li“! LiFei-Fei! Hannaneh Hajishirzi??>
- Luke Zettlemoyer > Percy Liang! Emmanuel Candés! Tatsunori Hashimoto !
c AVG. MTURKER e » | -
ot Mathematical Competition PhD-Level
9 p KAGOLE SOTA Problem Solving Math Science Questions
g 50% ‘ (MATH500) (AIME24) (GPQA Diamond)
) aqo 32% — 95; .60 ’60 ®
s 4 Hios S ® e ®
0 259 i e O
25% ‘ 1TLOW | >85 ® 40
m 13.33% O 50 O ®
7.80% ® 01 PREVIEW (O ® ®
oH1-Bm ‘ 5 75 20
o% $1.0 $1|o.o $100.0 $1,000.0 8 ® 40
COST PER TASK < 65 0] ®

L @ , 1@ 1 , . ,
512 2048 512 2048 8192 1024 4096
Average thinking time (tokens)

More Test-Time Computes

Long CoT empowers transformers to solve computationally more intensive
tasks (Feng et al. 2024, Merlill et al. 2024, Li et al. 2024, etc.)

Long CoT is great! BUT ...

Chain-of-Thought (CoT)

X

[Question]

Xi+1 | Xiy2 Xitj

Large Language Model

X; Xir1l | Xig2

Image adapted from Hao et al., 2024

[Answer]

Xitj

e Out-of-Memory: Accumulated
thoughts will exceed model’s effective
context windows.

® Large Cost: Self-attention makes
generating each new token
prohibitively expensive.

e Low Accuracy: Relevant
information becomes buried and
hard to retrieve (Liu et al. 2024, Ye at
al. 2025, etc.)

Most Intermediate Steps are “Erasable”

e Math

Theorem.
There are infinitely many prime numbers.

Lemma.
Every integer n> 1 has a prime p divisor.

Proof of Lemma. Take the smallest divisor p>1
of n. If p were composite, it would factor as ab
with 1<a,b<p, contradicting minimality. Hence p
is prime and divides n. §

No longer useful
Proof of Theorem. Assume, for contradiction,

that the complete list of primesisp_1, ... ,p_k.
Set N=p_lp_2..p_k+ 1. By thelemma, N has
some prime divisor q. But every p_ileaves
remainder 1 when dividing N, so none of them
divides N; hence g is a new prime, contradicting
completeness. Therefore primes are infinite. §

o LILM Reasoning (from DeepSeek-R1 run)

Question: “Your mother has 4 children: North,
South, BEast—what’s the 4th child’s name?”

Alright, since the three children already named
—North, South, and East—correspond precisely
to three of the four cardinal directions, it seems
perfectly logical to complete the compass
pattern by concluding that the fourth child must

therefore be named West.
No longer useful

Wait — maybe it’s a trick: “your mother” means
you are the fourth child.

Wait — the question wants a *name?*, so the
answer is actually *your own name*.

— Final answer: your name.

“Erasure” is Fundamental to Computation

One Step of Thinking < One Step of Computation

Turing Machine (1936) Modern Computer Transformer + PENCIL

2 ~
-
e -~
.
»
< .
P
“ @
.
“
w
.
’ H :
>
a
w
>
.Ht
’,
\ -
.
.
=
N
”
£, >
*
: ..n. 2
4 y - &
- L " £ oy | -
o’ L e . Je
N LN 4 'y I
8 > . 5
. . : g
3 . . -4
. [o A N -
P o
Qv S - 7 - s }
h -~ . -~ - . /
« / > : O :
N iy = A < R /
o , ¢ " 4 s " o o < ks ” N
2 L » » =’ s y
s " -y & - % .. B h ~ L 4
: :) B \ g (3 5 . 3
| : Y = N \y > { : 5 S N
. ’ s
) =N) >~ > - n S
- & & 3 " : 2 A A
...- oy . \ -~ af - . \\.ny. P & .
. [-4
., -l v H 2
{ 3 - - ¢ 8 LY
- 1 o
| : ..v - - | - o ¥ £ A
- i e 3 > by ¥
- - o - ' g 3
& % " N .
/ w2 L - v A A4 >
. - e :
” A \.‘ ...»
- ’ > > _
g b 7 AT o -
A L9 Ak, 2) .
| IR 0 o .
N e~ A ¢ : i B N
< 1 o 0
AR - /. ¥ S 8 i
A 3 W " .
) & 50 2 A
>4 vy » 7
- 2 \. .
P S 2
- = " P ul
5 E »
e > o 2 .
1N » . y)
™ N o5 "— P
] O Y > 4
= -] o “ &
< 3 J (e
N “« X% -~ p 7
—ts S N
/.\M " <y N
Ps) o - :
S . \w 3 P .
N . o r
e bt § el
b1 - 5 > !
w 5 3 13 4 A
» '4 » "
: P .
: ¢ .. £
« . M Yy _Jw
7 y 4
X ! o A
o *) ')
\ “ 4 o~ G .
:
/ » W—M ofy -y
o “ - - - .¢- o
- 5 a
= w K 4.. ...~
> ! .
. » A]
S ! W
> N & -

5 L4

s Arls
w5 S

o~

B 4
. - ﬁ...
R N
o o
p 44 2
y Y,
o e 53
..l!.n}oar.p.wr.
e Sl |
e

A
4

Whatis © PENCIL?

Model Generation (Write) < Reduction Rule (Erase)

O ® _ examples.lisp
: j ' : SLIME 2.26
CL-USER> (hello-world)

(defun hello-world () hello, world
R "Print 'hello, world' message." NIL
Chaln-of-Thought (COT) (format t "hello, world~%")) CL-USER> (factorial 6)
720
(defun factorial (n) CL-USER> (trace factorial)
"Compute factorial of n." (FACTORIAL)
output token X; Xip1! Xiio Xit [Answer] EEnd: IS Al fact o
(Samp”ng) (x n (factorial (- n 1))))) 1: (FACTORIAL 5)

2: (FACTORIAL 4)
Sdefun fibonacci (n) 3: (FACTORIAL 3)
"Compute nth Fibonacci number." 4: (FACTORIAL 2)
(if (< n 2) 5: (FACTORIAL 1)
n 6: (FACTORIAL @)
(+ (fibonacci (- n 1)) (fibonacci (- n 2))))8 6: FACTORIAL returned 1
5: FACTORIAL returned 1

last hidden state

4: FACTORIAL returned 2
3: FACTORIAL returned 6
2: FACTORIAL returned 24
1: FACTORIAL returned 120
@: FACTORIAL returned 720

720
CL-USER> (fibonacci 6)
8
CL-USER>

input embedding

input token [Question] | = X | Xit+1 | Xit2 Xitj

-:—— examples.lisp All L17 (Lisp adoc [COMMON-LISP-USI

Autoregressive Next-token Generation Functional Programming

Whatis © PENCIL?

<" Reduction Rule (Erase)

ETURN|] = CA

e Reduction is triggered when the sequence matches the pattern

» generate thoughts and ' triggers reduction.

NN
_}

® PENCIL iteratively

10

Example 1: Arithmetic Expression Evaluation

A toy store put together party bags for a birthday. They made 3
blue bags with 5 toys each and 2 red bags with 4 toys each. How
many toys were used 1n total? There were 23 toys used in total.own
into parts! There were 15 toys in all blue bags. a@@&%&%w:he%@s%@yst
vk abdbetHabgabokoNeingght—EhekbbudbbhbodmbbaknpaadboBa zhe®were
%ﬁ?&%&ﬂ@@é@bggadc%e@- vaogsBtrendobigsa ndhegdﬁhégeZnggEmﬁrtbyﬁ +
EnvallinbesehbaThere were 23 toys used 1n total. ¢RETWEBN¢ 8 toys in
all red bags. [RETURN]

C [CALL] T [SEP] A [RETURN|] = CA

11

Example 1: Arithmetic Expression Evaluation

Prompt: A toy store put together party bags for a birthday. They made 3 blue
bags with 5 toys each and 2 red bags with 4 toys each. How many toys were
used in total?

PENCIL /*

A toy store put together party bags for a birthday. They made 3 blue bags with
5 toys each and 2 red bags with 4 toys each. How many toys were used In
total?

12

Example 1: Arithmetic Expression Evaluation

Prompt : Atoy store put together party bags for a birthday. They made 3 blue bags with 5 toys each and 2 red bags with 4 toys each.
How many toys were used in total? i _________________________

(.. [EndOfPrompt] [CALL] Let's break this problem down into parts! [CALL] First, let's)

, Chain-of-Thought / ~ =k figure out how many toys were in all blue bags. Looking at the blue bags, they made 3
Response : Let's break this problem down into parts! First, let's figure :?gs;v eIy SInoac iSO YN SINDISRe MISEE] There were 15 toys In all
out how many toys were in all blue bags. Looking at the blue bags, \olue bags. [RETURN] J
they made 3 bags with 5 toys in each, so multiplying 3 x 5 = 15. Y
There were 15 toys in all blue bags. That's just part of the story B ([EndOfPrompt] [CALL] Let's break this problem down into parts! There were 15 toys in)
though - we still need to know how many toys were in all red bags. & . = \all blue bags.
Looking at the red bags, they made 2 bags with 4 toys in each, so Y

(... [EndOf Prompt] [CALL] Let's break this problem down into parts! There were 15 toys in N
/,\ - | all blue bags. [CALL] That's just part of the story though - we still need to know how
| many toys were in all red bags. Looking at the red bags, they made 2 bags with 4 toys

multiplying 2 x 4 = 8. There were 8 toys in all red bags. Now that we
know both amounts, we can find the total toys by adding the toys from
blue and red bags together: 15 + 8 = 23. There were 23 toys used in

9 total. y \In each, so multiplying 2 x 4 = 8. [SEP] There were 8 toys in all red bags. [RETURN]
/7 «(...[EndOfPrompt] [CALL] Let's break this problem down into parts! There were 15 toys in
PENCIL » & " all blue bags. There were 8 toys in all red bags.
(Response : There were 23 toys used in total. J < | (... [EndOf Prompt] [CALL] Let's break this problem down into parts! There were 15 toys in)
j . | all blue bags. There were 8 toys in all red bags. Now that we know both amounts, we can
" find the total toys by adding the toys from blue and red bags together: 15 + 8 = 23.
\[SEP] There were 23 toys used in total. [RETURN])
. = & . (...[EndOfPrompt] There were 23 toys used in total.
Hidden CoT (- v
+ /9 ([EndOfPrompt] There were 23 toys used in total. [EndOfText])

Example 2: Quantified Boolean Formula (QBF)

4X,VX; : (XoVaXoVX1) A (X1VX2) A (X2) A (1XoV—aX1) A (X1 V-X1) A (0X1V—Xo) AnSwéer | 18ryalse
Xo=False AnOswéer TsyFXiL%éalﬁéyArXswc rusgAfsSwee XMMJ@:P AiPEtiers 1Brue
P RE ¥ & B EXTERNA S wakh KimbEdes bsdX (=a ms e e v A ESEENG | SRFARERN 2 roard
clause 1s True, 4rd clause 1s Faulise HEHA <lAnswe151§rﬁalse FREERUBRNGr 1s
True [RETURN]

N\ CoT: length « exp(n) “\, PENCIL: length « poly(n)

14

Max Sequence Length Comparison (CoT v.s. PENCIL)

= - = -
= 12500 I w/o Reduction ! %0150000 2 w/o Reduction !
3 100007 pe w/ Reduction : 3 1200001 mmmm w/ Reduction i
7500 P05 90000 |
: i : @ bos
= 5000 | = 60000 |
o | - |
% 2500 : % 30000 l |
3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10
Problem Size Problem Size
3-SAT QBF

(a special case of QBF)

PENCIL significantly reduces the maximal context length during inference

(x 0.004 when n=10 on QBF)

Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought

Though§g Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Though ought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Though ought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought

Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought

pENClL

Long Thoughts Wlth

Experimental Setting: Training and Inference

Training: Key difference between CoT and PENCIL = Data Generation*

ZCoT = — Z log p(next token | complete sequence)
ZPENCIL = — Z log p(next token | reduced sequence)

We train a small transformer (25M parameter, 2048 context length) from scratch.

Inference: C [CALL] T [SEP| A |[RETURN| = CA

Preserve the KV cache of Context (C) and recompute that for Answer (A)

18

Performance Comparison on 3-SAT and QBF

Baseline 66 57 46 51 46 51 49 51 Baseline o0 82 85 68 60 69 71 66

CoT 100 100 100 99 84 63 54 50 CoT 100 100 97 094 74 72 69 73

PENCIL 100 100 100 99 ' 99 100 100 100 PENCIL 100 100 100 100 100 100 100 100

3-SAT QBF

“.PENCIL significantly outperforms \.CoT on NP-hard tasks SAT and QBF
(1.e. almost perfect v.s. random guessing).

19

[—

Accuracy (%)

Convergence Speed (CoT v.s. PENCIL)

Accuracy (%)

Accuracy (%)

et

et
<

Training Loss

0

Training Loss
Training Loss

5000 10000 15000 20000 0 6000 12000 18000 24000 0 6000 12000 18000 24000
Iterations Iterations [terations

OBF n=4 OBF n=5 OBF n=6

““PENCIL converges faster and is more sample efficient.

20

For Each Token, len(prefix for %) << len(prefix for \)

~ 100" A ~ 100 — ~ 100/ -
S ; > /f» > Pw WV‘V U
> 80 100.0;; > 301 100.0 > 80100.0
. "\ . 4 | |
5 00 W 100.0 5 60 W 100.0 g 60 M” 100.0
8 40{ » 8 40/ ~ 3 40| -
< r < ‘ < -
20 | 20 - - - y.) 1o —
N 7] /)
3 S 1 S
I - R
2 : 2
:g 0 k — :§ 0 L — :§ 0 -
= 00 02 04 06 08 10 £ 000 06 12 18 24 3.0 = 0.00 025 0.50 0.75 1.00 1.25 1.50
Training FLOPs « lell Training FLOPs « lell Training FLOPs « lel2
OBF n=4 OBF n=5 OBF n=6

“.PENCIL is computationally more efficient than \.CoT.

Example 3: Einstein’s Puzzle

- Constraint 1 : The house is immediately to the right of the one who keeps birds
- Constraint 2 : The Brit is immediately to the right of the German
- Constraint 3 : The one who keeps dogs is the same house as the red house

- Constraint 4 : The one who keeps birds is immediately to the right of the Swede

y S
> \‘

Question: who owns the fish?

Solution :
House # 1 2 3
Color Red Blue
Nationality | Swede |German | Birit
Pet Dogs Birds Fish

Answer: the Brit owns the fish

Example 3: Einstein’s Puzzle

(b) Summarize state changes
and update possibilities. ©

(a)

Proms:

y ™ un > .. ~
P (a) Solve each constraint as a T ChLL
wits gubtask and erase the thOughtS. ategory of $... Currently, the pet category of $ After considering all
keeps Hwee o o following House #1 allows the following constraints, the possible values
- Constraint 2 : The Brit is immediately to — (- . .) —.ontions: birds doas, or fish ... options: birds dogs, or fish ... for the pet category of House #1
the right of the German $ Let’s consider constraint 1 $ Let’s consider constraint 1 have been narrowed down to ...
[CALL] $ House #1’s color reduces to ... $ Some constraints remain
- Constraint 3 : The one who keeps dogs $ Since green must be ~ $Let's consider constraint 2 | unsatisfied and thus the puzzle
Is the same house as the red house : j immediately to the right of Birds, j $N ored al ~5:| is still not fully solved
ot A : ” we remove “green” from House ow we've considered a i
- Constraint 4 : The one who keeps birds ¥1 (It car't bg' e constraints, let's summarize $ Since House #1 color
is immediately to the right of the Swede (it can’t be in the leftmos category still has two possible
— position if it’s supposed to be on [SEP] choices blue and red, we
Who owns the fish? the right of something else) ... — [CALL] —>] explore each obtion separatelv
[SEP] $ After considering all $ Let us suppose House #1
$ House #1’s color reduces to constraints, the possible values is blue
ibilities blue and red for the pet category of House #1
PENCIL /* possi [CALL]
-) ™ \[RETURN]) have been narrowed down to ... $ Currently, the pet category of
Solution : v \eve) [RETURN] House #1 allows only possibility
' - N : . dogs ...
House # 1 > 3 [CALL] i : i
$ Currently, the pet category of o
Color Red Blue | Green :
House #1 allows the following — [CALL]
Nationality | Swede |German| Brit <« | options: birds dogs, o fish ... | $ After considering (C) BranCh and bathraCk fOI‘
Pet Dogs | Birds | Fish ¢+ | 8 Lets consider constraint 1 Ay the remaining possibilities.
$ House #1’s color reduces to for the pet category S NEaEe
The Brit owns the fish possibilities blue and red ... have been narrowed down to ...
9) \C J \

23

Special Usage: Summarization

C [CALL] T ' CALL] T' [RETURN] = C [CALL] T'

t t

Long Thoughts Summarized Thoughts

Tail recursion in functional programming:

python Copy

def factorial tail(n, acc=1):
"WiNTail-recursive factorial: the recursive call 1is the final action."""
if n == 0:
return acc # base case
return factorial tail(n-1, acc*n) # tail call

print(factorial tail(5)) # > 120

The “returned value” is another “function call” = A (Answer) = [CALL] T’ o2

Performance on Einstein’s Puzzle

CoT PENCIL
Puzzle Size PENCIL

oo o [EIEIED

L

Q
R e« DS

=
4 x4 34 100 ¥ 040M |39 38 43 52138 44
o (ﬁ;b 512 1024 2048 512 1024 2048
33 79 99 | Context Length Context Length

100
7

85
70
55
40

“.PENCIL solves Einstein’s puzzle almost perfectly — a logic puzzle that

even GPT-4 struggles with.

(Max context length, CoT = 151,192 PENCIL = 3, 335)

25

Solvable
Problem Size

[—

Test-Time Scalability

0 *— | 10 ® | 5
g | 1 N g 1 ? N
6 S E S S g
7z O 7z O
, ® CoT = 95% ® PENCIL = 95% 2RI ® CoT = 95% @ PENCIL = 95% A O n —
CoT < 95% >~ PENCIL < 95% A CoT < 95% >~ PENCIL < 95% A gg% = ggojo o ggﬁg}k = 32&
0 e —— O 1 P
2.5 5.0 7.5 10.0 0 10 20 30 40 0 50 10 15 200
Inference Time (s) Inference Time (s) Inference Time (s)
[(] ,
3-SAT OBF Einstein’s Puzzle

ZaN

PENCIL can solve larger-sized problems.

GGlven more inference time,

How about other tasks beyond 3-SAT, QBF, Einstein’s Puzzle?

26

N\, CoT is Turing-Complete, but Inefficiently

Theorem (Merrill et al. 24, Joshi at al. 25, etc.)

For any Turing machine TM, there exists a finite-size decoder-only transformer

such that \.CoT with this transformer simulates the Turing machine with
e Total number of generated tokens = Maximal context length = O(7)

Start 90 20| [q0
< 1 0
A Transition Step A New Token
Step 1 6(q0,0) = (q1,1,—) q0 q0 q1
<> 1l ol I]1
M Tane - [E[Jo[i]e]e]e] - 3B Token
P Step2 0(q1,b) = (g2, 1,4) qo| 2] || |e2 Sequence
1l ol |1 |2
~ELoLAlee] - 7 i I I I
Step 3 d(q2,1) = (g3,0,<)
T T-T1T-T1T-7T <=
Space = 4 - |B]1fofo]1]b[b] - #Tokens = 5

Input © Step 1 Step2 Step 3 28

Universal Efficient Computation Power of “. PENCIL

Theorem (Main, Informal)*

For any Turing machine, there exists a finite-size decoder-only transformer such
that for any input, on which Turing machine uses 7 steps and S space to
compute, “ PENCIL with this transformer computes the same output with

1. Total number of generated tokens = O(7)
2. Maximal context length = O(S)

® For complex problems, typically S << 7

® PENCIL is Turing-complete with optimal time and space complexity

® PENCIL can solve ANY computable tasks efficiently

29

Universal Efficient Computation Power of “. PENCIL

Corollary (Informal)

With poly(n) context length, “ PENCIL can solve all problems in PSPACE,
while standard \.CoT can only solve problems in P.

e P: Problems solvable in polynomial time.

e PSPACE : Problems solvable using polynomial space, regardless of time.

N\

30

Strategy: Iterative “Think” and “Summarize”

Chain-of-Thought /

Input Step 1 Step 2 Step3 | -+ |Step t-1 Stept; | |Stept+1| - |Accept/ Reject

Total Steps : O(Time) Max Length : O(Time)

D

PENCIL 4 y
/¢ | state® 1 |- | State(s; | [Stepti+1| - [Stept,,(| [SEP] |State(*!) 1|+ |State(*! s, ,| [RETURN]
“—— Previous State —— - Simulate - L Summarize -
o State(i+1) 1 --- State(i+1) Si+1
4 New State B Total Steps : O(Time) Max Length : O(Space)

® (Step | : simulating a computation step of TM
° : the current configuration of TM (written symbols)

When to Summarize? Length exceeds
twice the actual

needed space.

Never (\) Every Step (/‘} »)
Tokens O(Time) O(Time x Space) X O(Time)
Generated
Max Context :
O(Time) X O(Space) O(Space)

Recall we use [CALL] T [SEP] [CALL] T' [RETURN] = |[CALL]T' tosummarize.

BUT, can transformers automatically detect when to
summarize / erase ?

32

Proof Technique: FASP (Full-Access Sequence Processing)

Lemma (Informal)

Programs in FASP = All finite-size transformer functions

A FASP program describes a process
of constructing transformers

e Each Variable = a transformer

« Each Line of Code = an operator
from simpler transformers to a more
complex transformer

e Returned Variable = the target
transformer one aims to construct

Detect separator token This 1s the Proof |
is_sep = (= onehot ([SEP])) .

exist_sep = seq_or(is_sep)
Phase masks to distinguish between simulation and summarization phases
sim_phase_mask = not exist_sep

sum_pnase_mask = exist_sep and (not is_sep)

Position tracking for Simulation, frozen in SUMMARIZATION (after [SEP] is generated)

next _sim nos = sea sum(and sim phase mask)
current_sim_pos = next_sim_pos - (and sim_pl ase_masl)
max_PpPos = seg_ max currenct_sim_pos)

min_pos = seq_min(current_sim_pos)
expected_sum_len = max_pos - min_pos + ReLU(max_pos- next_sim_pos -1) +

SIMULATION Phase

Get current symbol at head position

current_symbol = rightmost_exact_match(next_sim_pos,Current_sim_pos, ,onehot (b))
Compute next step based on transition function

simulation_step = transition(get_state, current_symbol)

MATN - Select appropriate action based on current phase

result = if_then_else(exist_sep, summary, simulation)
|

33

Future Directions & Open Questions

® How to incorporate PENCIL into real-world LLM systems? How to
more effectively teach them to reason in a structured way?

® Does there exist other “erasing” mechanisms (e.g. other reduction
rules) that are even more efficient than PENCIL?

® Are there any other perspectives from which theories in TCS can
help guide practice?

34

Takeaways

. We propose “:, PENCIL, a new LLM reasoning paradigm that iteratively
generates and erases thoughts using the reduction rule:

C | CALL - TP ShPAER IR TURN.| .= \CA

. Empirically, “.. PENCIL enables longer and deeper thinking using shorter
context, and thus can scale up to handle more complicated tasks.

. Theoretically, ., PENCIL is Turing-complete with optimal space and time
complexity, and thus can solve arbitrary computable problems efficiently.

Thanks !

39

