

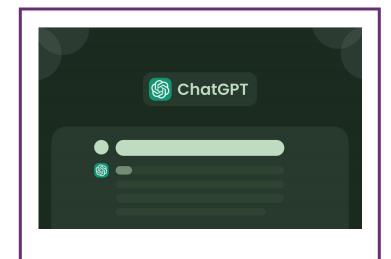
Think-at-Hard: Selective Latent Iterations to Improve Reasoning Language Models

Tianyu Fu*, Yichen You*, Zekai Chen, Guohao Dai, Huazhong Yang, Yu Wang *equal contribution

contact for more questions: fuvty@outlook.com

Background: LLM

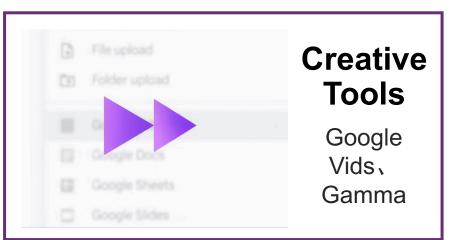
LLMs are widely used across increasingly diverse domains and tasks

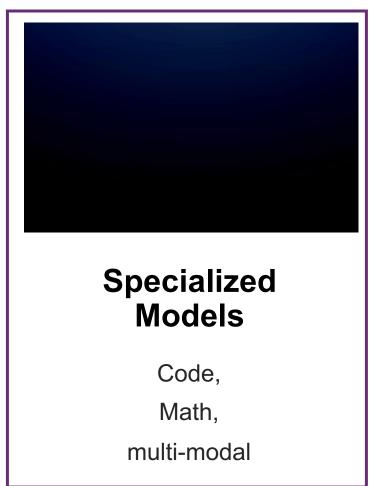


OpenAl ChatGPT、Google Gemini、Qwen......

Agent

OpenAl Operator, Copilot





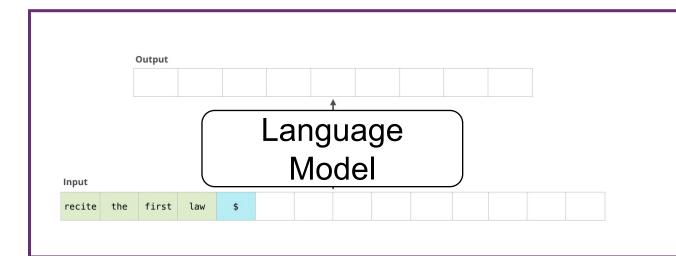
^[1] Brown, Tom B. "Language models are few-shot learners." arXiv preprint arXiv:2005.14165 (2020).

^[2] Wang, Lei, et al. "A survey on large language model based autonomous agents." Frontiers of Computer Science 18.6 (2024): 186345.

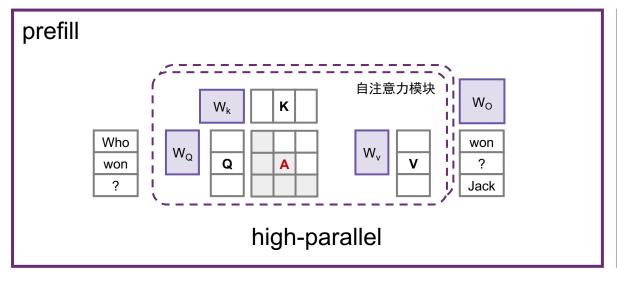
^[3] Yin, Shukang, et al. "A survey on multimodal large language models." arXiv preprint arXiv:2306.13549 (2023).

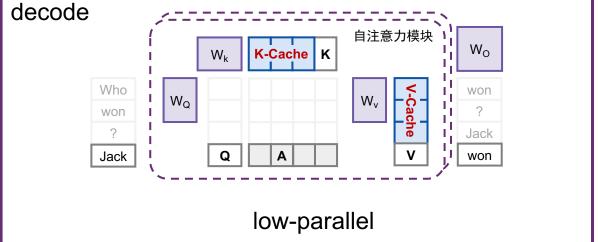
LLM Autoregressive Generation

Generation scheme of LLM: prefill and decode



Autoregressive generation





Dynamic Token Budget Allocation

R2R

TaH

?

2025.06NeurlPS'25

90:5:5 Law most next-token predictions are easy

SLM + LLM route only hard tokens to LLM at token level **2025.10** *arXiv*

Latent Overthinking

many easy tokens gone wrong at the second latent iteration

Selective Latent Iteration

think twice only on hard tokens

2026.? something new

Recent Work: SLM-LLM Mix Inference (R2R)

conclusion of reasoning

Use small language model (SLM) and LLM for different reasoning steps

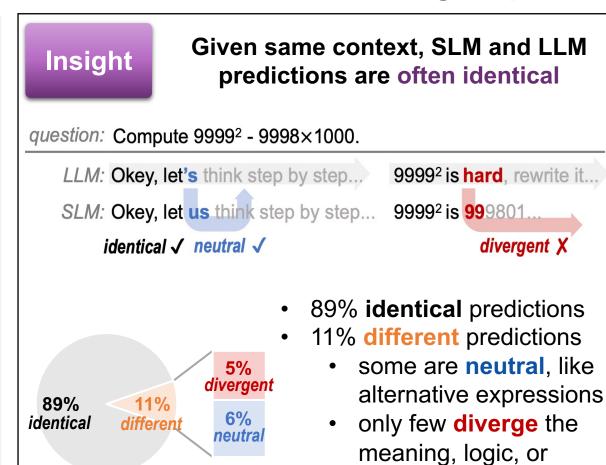
Motivation

Fast but weak SLM slow but strong LLM

Tested results on AIME'24-25

Туре	Model	Accuracy	Latency (s / question)
SLM	R1-1.5B	⊗ 9%	© 199
LLM	R1-32B	© 45%	⊗ 498

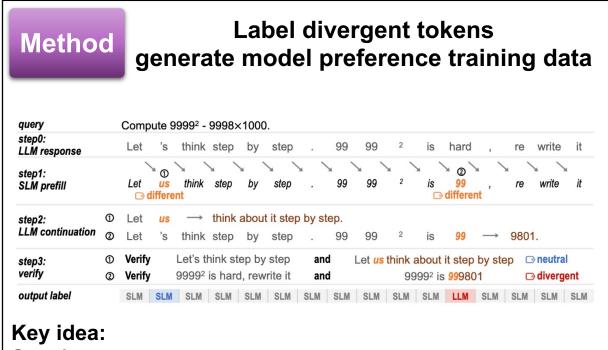
We should selectively use SLM and LLM for different generation steps, constructing a **fast and strong** mix-inference method



[1] Tianyu, Fu, et al. "Efficiently Navigating Divergent Reasoning Paths with Small-Large Model Token Routing" NeurIPS'25.

Recent Work: SLM-LLM Mix Inference (R2R)

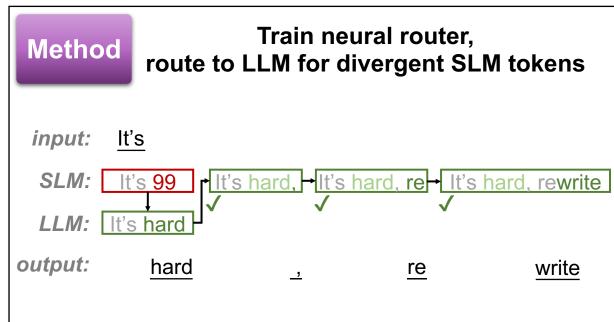
Label divergent token, then train a neural token-router, utilizing LLMs only for path-divergent tokens during SLM generation



Step1. find all predictions where SLM-LLM differ

Step2. from the difference, let LLM **continue generation** until the end of current sentence, to understand difference's impact

Step3. ask another LLM to verify if difference causes divergence



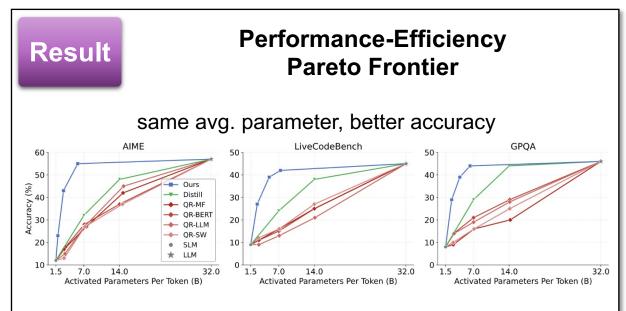
Routing scheme:

We train a 56M neural router Given SLM output token & its last-layer hidden states, it classifies whether this token is divergent, Immediately route to LLM if predicted as divergent

[1] Tianyu, Fu, et al. "Efficiently Navigating Divergent Reasoning Paths with Small-Large Model Token Routing" Submitted to NeurIPS'25. [Under Review]

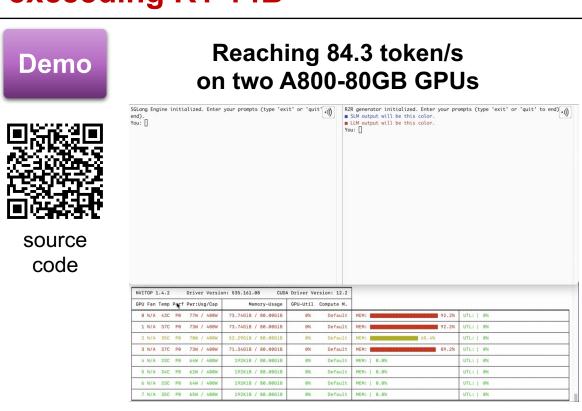
Experimental Results

Mixing R1-1.5B & 32B, uing R2R with 5.6B avg. activated param. per token achieve performance exceeding R1-14B



For R2R-5.6B (mix R1-1.5B & 32B)

- Comparing R1-14B, 1.50x speedup, 1.07x accuracy
- Comparing R1-32B, 2.76x speedup, achieving 92% of its accuracy with only 11%-15% LLM usage



R1-32B Finished in: **1min 12s**

R2R Finished in: **32s**

[1] Tianyu, Fu, et al. "Efficiently Navigating Divergent Reasoning Paths with Small-Large Model Token Routing" Submitted to NeurIPS'25. [Under Review]

Background

Require strong reasoning model under limited parameter size

Device Type	Example GPU	Memory Size	Model Size (Qwen3)	AIME'24	MMLU-Redux
			235B-A22B	85.7	92.7
Server	NVIDIA H100	80 GB	32B	81.4	90.9
			8B	76.0	87.5
PC	RTX 4090	24 GB	4B	73.8	83.7
			1.7B	48.3	73.9
Smartphone	A17 Pro	8 GB	0.6B	10.7	55.6

Background

- Why cannot small LLMs perform well?
 - few tokens gone wrong
 - evident by R2R
 - certain tokens are fundamentally harder to predict
 - encode critical logic
 - reasoning directions
 - •
 - limited computation per decoding step for small LLM

Motivation

- Oracle: latent overthinking
 - uniformly think-twice involves more errors
 - think-at-hard solves most cases
 - hard token: tokens that cannot be accurately predicted in a single forward pass

Figure 1: Selective iteration can mitigate latent overthinking. (a) Toy example. Uniform latent iteration (always think-twice) can fix wrong predictions, but may also overthink and corrupt correct ones. (b) Next-token prediction accuracy of finetuned Qwen3-1.7B variants. Always think-twice causes more errors than corrections over direct reply. In contrast, the think-at-hard oracle, which iterates only when the first-pass prediction is wrong, achieves substantial improvements with minimal harm. While this oracle signal is unavailable in practice, it highlights the potential of selective iteration.

Motivation

- Oracle: latent overthinking
 - think-at-hard solves most cases
 - hard token: tokens that cannot be accurately predicted in a single forward pass

Training	Inference	Accuracy
Standard	Standard	52
AlwaysThink	AlwaysThink	38/-14
AlwaysThink	TaH-Oracle	77/+25
TaH-Oracle	TaH-Decider	54/+ 2
TaH-Oracle	TaH-Oracle	80/+28

Table 4: Impact of iteration strategies on Qwen3-0.6B (first 100 MATH500 samples).

Can LLMs selectively dedicate latent iterations only to hard tokens?

key question

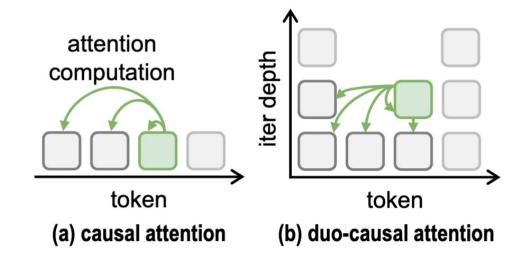
Challenges

- Model architecture
 - support dynamic iteration depths
 - enable cross-depth information flow
 - while maintaining the parallel computation required for training and prefilling
 - handle the shift in prediction objectives across iterations
 - while maximizing parameter reuse
- Training scheme
 - remain stable despite the tight coupling between components
 - optimal iteration policy depends on the prediction qualities at each depth
 - predictions in turn depend on the policy's iteration choices

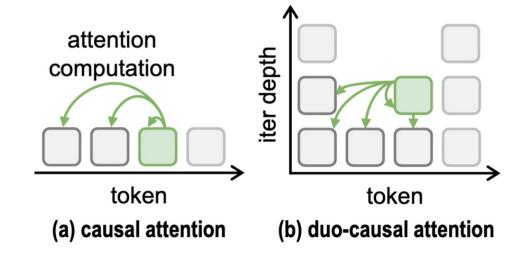
Methods

- Model architecture
 - support dynamic iteration depths
 - enable cross-depth information flow
 - while maintaining the parallel computation required for training and prefilling
 - handle the shift in prediction objectives across iterations
 - while maximizing parameter reuse
- Training scheme
 - remain stable despite the tight coupling between components
 - optimal iteration policy depends on the prediction qualities at each depth
 - predictions in turn depend on the policy's iteration choices

- Duo-causal attention
 - motivation
 - previous: casual attention attend within each iteration depth
 - ours: tokens may stop at different depths, limiting deeper tokens to access contexts stopped at shallower iterations
 - efficient training requires all tokens at depth d be computable in parallel,
 - without depending on deeper tokens d'>d that have not yet been computed.



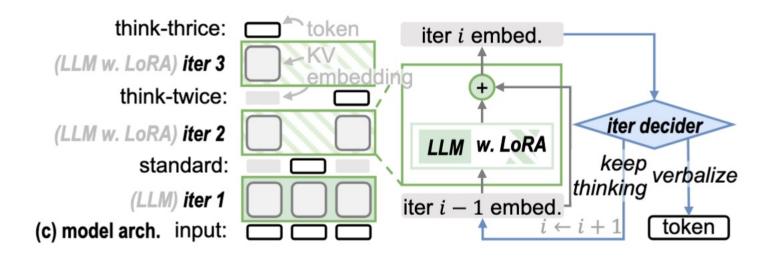
- Duo-causal attention
 - solution
 - extends causality to a 2-D space
 - previous positions
 - shallower iteration depths



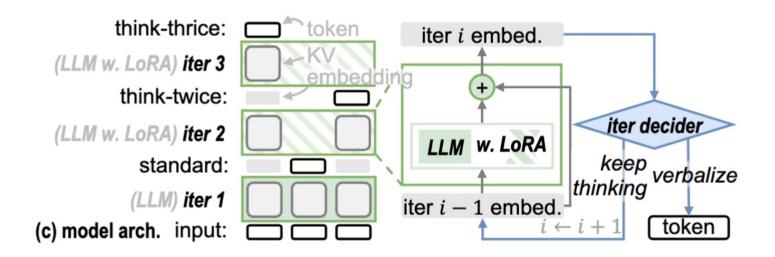
- LoRA design
 - motivation
 - previous: use identical weights across all iterations
 - objective: objective shift
 - later iterations shift from next-token prediction to current-token refinement
 - the model stop and think rather than predicting next-next token



- LoRA design
 - solution
 - LoRA on iterations d>1
 - base LLM focus on latent embeddings
 - adapter handles the objective shift
 - residual connection across layers



- Iteration decider
 - solution
 - MLP
 - determine whether to continue latent thinking or output the verbalized token after each iteration.
 - take shallow, middle, and final hidden states from the backbone LLM



Methods: Training Scheme

- Training scheme
 - motivation
 - backbone network & neural iteration decider are tightly coupled
 - backbone: generates hidden states as inputs for the decider
 - iteration decider: controls the backbone's KV cache and iterations
 - training both simultaneously causes instability due to mutual distribution shifts

Methods: Training Scheme

- Training scheme
 - solution
 - backbone network & neural iteration decider are sequentially trained to align an oracle iteration policy π
 - oracle iteration policy π
 - determine token hardness using a frozen reference LLM
 - let the reference model correctly predicts next token with a standard forward pass
 - easy: correct prediction
 - hard: false prediction
 - adopt the supervised fine-tuned (SFT) variant of the base model

Methods: Training Scheme

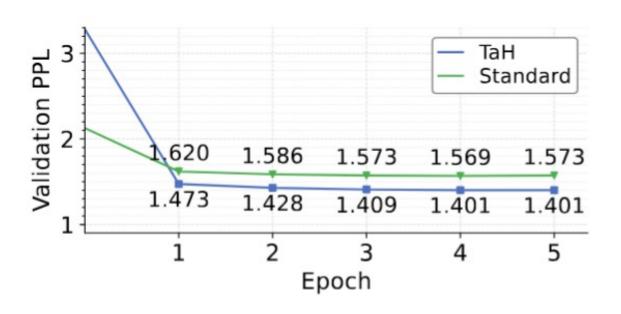
- Training scheme
 - solution
 - two stage training
 - stage 1: backbone supervision under π
 - optimize the LLM by executing iterations according to π
 - compute the standard next-token prediction loss, but applied at the oracle-determined depth for each token
 - stage 2: decider imitation under frozen backbone
 - freeze the backbone model
 - binary cross-entropy, imitate the continuation labels from the oracle policy

Setup

- Base model:
 - Qwen3-0.6B-Base
 - Qwen3-1.7B-Base
- Baselines
 - Standard: always verbalizes directly and reduces to the original Qwen model;
 - AlwaysThink: applies the maximum number of latent iterations to all tokens;
 - SoftThink: latent space thinking
- Method
 - we prune one layer from the base model so that \name matches the parameter count of baselines. The layer is chosen to minimize the increase in validation loss.
 - we also report results for an unpruned variant, TaH+, which adds less than 3\% extra parameters

Table 1: Accuracy comparison of different baselines across five benchmarks and two model sizes. Subscripts indicate improvement over Standard.

		Method					
Param.	Benchmark	Standard	Routing	SoftThink	AlwaysThink	ТаН	ТаН+
	GSM8K	62.5	45.6	61.3	54.6	64.4	68.8
	MATH500	47.2	27.3	48.8	32.8	51.2	54.2
	AMC23	23.4	10.9	24.1	20.3	32.5	30.6
0.6B	AIME25	4.2	1.0	2.5	1.5	4.2	5.0
	Olympiad Bench	18.8	7.4	19.4	10.2	23.9	24.0
	Average	31.2	18.5	31.2	23.9	35.2/+4.0	36.5/+5.3
	GSM8K	82.1	71.2	79.6	79.3	84.5	85.8
	MATH500	68.4	60.0	68.8	61.8	74.4	73.0
	AMC23	42.2	42.2	43.1	42.5	48.4	51.2
1.7B	AIME25	13.3	10.2	12.9	10.0	17.9	14.6
	Olympiad Bench	33.0	30.6	33.4	30.0	38.8	41.2
	Average	47.8	36.8	47.6	44.7	52.8/+5.0	53.2/+5.4



84.5 84.5 82.6 80.7 TaH 80.3 80 (35.1% Standard AlwaysThink 1.0 0.6 0.5 0.9 0.8 0.7 Continuation Threshold

Figure 3: Training dynamics of the LLM backbone on Qwen3-0.6B-Base. TaH converges rapidly and achieves lower perplexity.

Figure 4: GSM8K accuracy with respect to continuation threshold. Numbers in brackets indicate the percentage of tokens that iterate twice.

Table 2: Ablation study on architecture designs.

LoRA	Residual	Attention	MATH500	AMC23	Olympiadbench	Average
1	1	Duo-causal	51.2	32.5	23.9	35.9
X	У Х	Duo-causal	51.6 49.2	29.7 22.5	22.4 21.2	34.6 /-1.3 31.0 /-4.9
1	✓	Causal	47.8	24.4	19.4	30.5 /-5.4

Table 3: Ablation study on training schemes.

Supervision	Iter. Behavior	MATH500	AMC23	Olympiadbench	Average
Token-only	Oracle	51.2	32.5	23.9	35.9
Token+latent	Oracle	49.4	29.6	15.9	31.6 /-4.3
Token-only	Iter. decider Dynamic	44.8 11.0	24.1 2.8	17.3 2.7	28.7 /-7.2 5.5/-30.4

Training	Inference	Accuracy
Standard	Standard	52
AlwaysThink	AlwaysThink	38/-14
AlwaysThink	TaH-Oracle	77/+25
TaH-Oracle	TaH-Decider	54/+ 2
TaH-Oracle	TaH-Oracle	80/+28

Table 4: Impact of iteration strategies on Qwen3-0.6B (first 100 MATH500 samples).

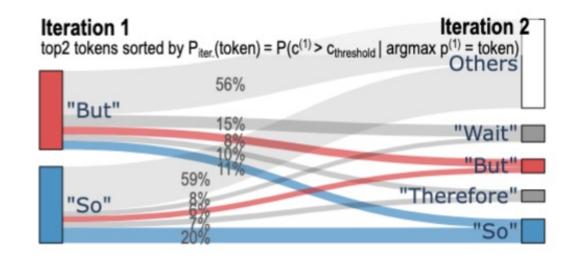


Figure 5: Next-token prediction changes across iterations. Top2 tokens that think-twice most are visualized.

Star If You Like

- thu-nics/
 - C2C
 - TaH
 - R2R
 - MoA
 - FrameFusion

Thanks for Listening

Think-at-Hard: Selective Latent Iterations to Improve Reasoning Language Models

