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It ,S All C OIlIle Cted! Sometimes Perspective Matters for Improvement!

Memory Perspective

* Long and short-term
memory

* Forget Gate
X Associative Memory

X ...

Matmul and
Transformers era

Dynamical System

X Linear approximation
can be surprisingly
effective!

X Discretization (extension
of forget gate)

* Local and global
convolutions

Modern Memory
Perspective

Data-dependent gating

Expressive memory
management

Expressive memory
architectures

Online learning and test
time training



What is Learning? What is Memorization?

X Can we learn without memory?

* Can we memorize without learning?
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What is Learning? What is Memorization?

X Can we learn without memory?  No!

* Can we memorize without learning? Yes!

Memory
Memory is a neural update caused by an input.

Learning
Learning is the process of acquiring effective and useful memory.



Associative Memory

X Is the ability to remember the relationship between (anretated) events/items/...
X Think of it as a dictionary:

* We have keys and values

X Learning is the process of acquiring the mapping!

X Training:

Key Value




Associative Memory

X Is the ability to remember the relationship between (anretated) events/items/...
X Think of it as a dictionary:

* We have keys and values

X Learning is the process of acquiring the mapping!

X Inference:

Query Value




What are RNNs in This Perspective?

* There is a fixed-size memory (called hidden state):
* We aim to compress the past data into this memory
X Write: Given an incoming data, we compress and add it to the memory!

X Read: Send a query and receive the corresponding information from the
memory!
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Let’s Get Inspired from Our Brain!

* Human brain is effective and efficient!
X Our brain constantly memorizes!

* We have short-term and long-term memory!

* Our short-term memory is accurate (like attention) but for long-term memories
we might hallucinate (like fading memories)!

* Our memory is a neural architecture, not a simple set of neurons.
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First Generation of RNNs
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Second Generation of RNNs
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Let’s Generalize this Process!

Memory P
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How to Generalize the Process?

* Neural networks are great memorizers of their training data!

* We train a neural network so it learns how to compress the data into its
parameters!

Retrieval
Training
e ——— Porward Pass
Memory (NN) ¢



What are We Learning?

X Associative Memory: Learning the mapping!

* What is the objective?
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What are We Learning?

X Associative Memory: Learning the mapping!

* What tokens should be remembered?

Mt = Mt—l — 0; Vf(Mt—ﬁxt)
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What are We Learning?

X Associative Memory: Learning the mapping!

* What tokens should be remembered?
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What are We Learning?

X Associative Memory: Learning the mapping!

* What tokens should be forgotten?

My =M1 + 54, 5 M; = (1 - Oft)Mt—l + 54,
St =1t Si—1 —0; VI (Mi—1;x:) St = NeSr—1 — 0; V¢t (Mt—l;xt)
SN— (. —~ iy
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How to Train This?

* The recurrence in this formulation is non-linear and so is not parallelizable!

M= (1 -a)Mi—1 + 54,
St = UtSt—l —0; V¢ (Mt—1;xt)



How to Train This?

* The recurrence in this formulation is non-linear and so is not parallelizable!

My=1Q—-a)Mi-1 + S,
St = NtSi—1 — 0 VH-Mr=r2¢r)— V{ (M x4)

* Divide the sequence into subsequences:

St = NSe—1 — 0 uy
Uy = V¢ (Mtf;xt)



How to Train This?

X This is still a recurrent model!

* We need to write it as matrix multiplications!
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How to Train This?

X This is still a recurrent model!

. . L Bi=T1I_;(1—q;
* We need to write it as matrix multiplications! / . Hi“ =1 ( - )

Mt = (]. — let)Mt_l — gtVE(Mt_l; L'Et) — /BtMD — Z :gtVf(Mtf ZI; )
i=1 ’

* We can reformulate the above as: ( V& Wy;z:) = (Woks — vi)z, )
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Recap!

* How to design an effective long-term memory!

What are We Learning?

* Associative Memory: Learning the mapping!

* What tokens should be forgotten?

M =M1 + S, _ M =(1-a)Mi1+ 54,
Se=n: St-1 —0r VE(Mi_1;x;) St =081 — 0 VE(M;_15%;)
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Recap!

* How to design an effective long-term memory!

X How to train long-term memory in a parallelizable manner!

How to Train This? How to Train This?
* This is still a recurrent model! X The recurrence in this formulation is non-linear and so is not parallelizable!
i
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Recap!

* How to design a long-term memory!
X How to train long-term memory in a parallelizable manner!

* How to incorporate short-term and long-term memory?



Recap!

* How to design a long-term memory!
X How to train long-term memory in a parallelizable manner!
* How to incorporate short-term and long-term memory?

* How does it work in practice?
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Experimental Results: Language Modeling

Model Wiki. LMB. | LMB. PIQA Hella. Wino. ARC-e ARC-¢ SIQA BoolQ Avg.
ppld ppld | accT accT accntT acc? accT™ accn?T acctT acc? 0
760M params / 30B tokens
Transformer++ 2521 27.64 | 35778 6692 4219 5195 60.38 3246 3951 6037 48.69
Mamba 28.12 2396 | 32.80 66.04 39.15 5238 6149 3034 3796 57.62 47.22
DeltaNet 2437 2460 | 37.06 6693 4198 50.65 64.87 31.39 3988 59.02 48.97
TTT 24.17 2351 | 3474 6725 4392 50.99 64.53 33.81 40.16 59.58 47.32
Gated DeltaNet 21.18 22.09 | 3554 6801 4495 50.73 66.87 33.09 3921 59.14 49.69
Samba* 20.63 2271 | 39.72 69.19 4735 5201 66.92 3320 3898 6124 51.08
Gated DeltaNet-H2* | 19.88 20.83 | 39.18 6895 4822 5257 67.01 3549 3939 61.11 51.49
Titans (LMM) 20.04 2196 | 37.40 69.28 48.46 5227 66.31 3584 40.13 62.76 51.56
Titans (MAC) 1993 20.12 | 39.62 7046 49.01 53.18 67.86 36.01 41.87 62.05 52.51
Titans (MAG) 18.61 19.86 | 40.98 70.25 4894 52.89 68.23 36.19 4038 62.11 52.50
Titans (MAL) 19.07 20.33 | 40.05 69.99 48.82 53.02 67.54 35,65 3098 61.72 50.97




Experimental Results: Long Context (RULER)

Model S-NIAH-PK S-NIAH-N S-NIAH-W
2K 4K 8K 16K 2K 4K 8K 16K 2K 4K 8K
TTT 984 98.8 980 884 602 366 102 44 788 280 44
Mamba2 986 614 310 54 984 558 142 00 422 42 0.0
DeltaNet 96.8 98.8 986 714 472 154 128 54 462 200 1.6

Titans (LMM) 99.8 984 982 962 1000 998 934 802 904 894 8538
Titans MAC) 99.2 988 990 984 996 982 976 974 982 982 956
Titans MAG) 994 980 974 974 992 988 972 98.6 98.0 980 90.2
Titans (MAL) 98.8 98.6 988 978 998 98.1 968 964 98.0 974 92.0

* Momentum is very effective for longer context.
* Deep memory is important.

* Architecture matters in hybrid models.



Experimental Results: Long Context
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Experimental Results: Ablation Study

Model Language Modeling Reasoning Long Context

ppl | acc T acc T

LMM 27.01 47.83 92.68
+Attn (MAC) 26.67 48.65 97.95
+Attn (MAG) 25.70 48.60 96.70
+Attn (MAL) 25.91 47.87 96.91
Linear Memory 28.49 46.97 85.34
w/o Convolution 28.73 45.82 90.28
w/0 Momentum 28.98 45.49 87.12
w/o Weight Decay 29.04 45.11 85.60

w/o Persistent Memory 27.63 46.35 92.49
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