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It’s All Connected! Sometimes Perspective Matters for Improvement! 

Memory Perspective

✶ Long and short-term 
memory

✶ Forget Gate

✶ Associative Memory

✶ …
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Dynamical System

✶ Linear approximation 
can be surprisingly 
effective!

✶ Discretization (extension 
of forget gate)

✶ Local and global 
convolutions

✶ …

Modern Memory 
Perspective

✶ Data-dependent gating

✶ Expressive memory 
management

✶ Expressive memory 
architectures

✶ Online learning and test 
time training



✶ Can we learn without memory?

✶ Can we memorize without learning?

  Memory is a neural update caused by an input.

Memory

What is Learning? What is Memorization?

  Learning is the process of acquiring effective and useful memory.  

Learning
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✶ Is the ability to remember the relationship between (unrelated) events/items/…

✶ Think of it as a dictionary:

✶We have keys and values

✶ Learning is the process of acquiring the mapping! 

✶ Training:

Associative Memory

Key Value



✶ Is the ability to remember the relationship between (unrelated) events/items/…

✶ Think of it as a dictionary:

✶We have keys and values

✶ Learning is the process of acquiring the mapping! 

✶ Inference:

Associative Memory

Query Value



✶ There is a fixed-size memory (called hidden state):

✶We aim to compress the past data into this memory

✶Write: Given an incoming data, we compress and add it to the memory!

✶ Read: Send a query and receive the corresponding information from the 
memory! 

What are RNNs in This Perspective?



✶Write: Given an incoming data, we compress and add it to the memory!

✶ Read: Send a query and receive the corresponding information from the memory! 

×

×

⨁

Memory 
(Hidden State)

×

What are RNNs in This Perspective?



✶ Human brain is effective and efficient! 

✶ Our brain constantly memorizes!

✶We have short-term and long-term memory!

✶ Our short-term memory is accurate (like attention) but for long-term memories 
we might hallucinate (like fading memories)! 

✶ Our memory is a neural architecture, not a simple set of neurons.  

Let’s Get Inspired from Our Brain!
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First Generation of RNNs

×

×

⨁

Memory 
(Hidden State)

×

ℎ𝑡 = 𝐴ℎ𝑡−1 + 𝐵 𝑥𝑡 𝑦𝑡 = 𝐶ℎ𝑡

LSTM, GRU, LRU, SSMs, …



Second Generation of RNNs

×

×

⨁

Memory 
(Hidden State)

×

ℎ𝑡 = 𝐴ℎ𝑡−1 + 𝐵 𝑥𝑡 𝑦𝑡 = 𝐶ℎ𝑡

Linear Transformers, DeltaNet, RWKV, …



Let’s Generalize this Process!

×

×

⨁

Memory 
(Hidden State)

×

ℎ𝑡 = 𝐴ℎ𝑡−1 + 𝐵 𝑥𝑡 𝑦𝑡 = 𝐶ℎ𝑡

Several papers with different perspectives …



✶ Neural networks are great memorizers of their training data!

✶We train a neural network so it learns how to compress the data into its 
parameters!

How to Generalize the Process?

Memory (NN)

Training

Retrieval

Forward Pass



✶ Associative Memory: Learning the mapping!

✶What is the objective?

What are We Learning?

Memory (NN)

Training

Retrieval

Forward Pass



✶ Associative Memory: Learning the mapping!

✶What tokens should be remembered?

What are We Learning?

Memory (NN)
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✶ Associative Memory: Learning the mapping!

✶What tokens should be forgotten?

What are We Learning?

Memory (NN)

Training

Retrieval

Forward Pass



✶ The recurrence in this formulation is non-linear and so is not parallelizable! 

✶ Divide the sequence into subsequences:

How to Train This?



✶ The recurrence in this formulation is non-linear and so is not parallelizable! 

✶ Divide the sequence into subsequences:

How to Train This?



✶ This is still a recurrent model!

✶We need to write it as matrix multiplications!

✶We can reformulate the above as: (                                                     )

How to Train This?
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✶ How to design an effective long-term memory!

✶ How to train long-term memory in a parallelizable manner!

✶ How to incorporate short-term and long-term memory?

✶ How does it work in practice?

Recap!
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Memory As Context (MAC)



Memory As Gate (MAG)



Memory As Layer (MAL)



Experimental Results: Language Modeling 



Experimental Results: Long Context (RULER)

✶Momentum is very effective for longer context. 

✶ Deep memory is important.

✶ Architecture matters in hybrid models.



Experimental Results: Long Context

✶ BABILong Benchmark: Needle in 
haystack-style state tracking task.

✶ Architecture matters! 

✶ Fine-tuning helps to understand what 
information should be stored in the 
memory for this task. 



Experimental Results: Ablation Study



Thank you!

alibehrouz@cs.cornell.edu
alibehrouz@google.com @behrouz_ali
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