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Fig from Emu3: Next-Token Prediction is All You Need

A very powerful paradigm that gets us so far

A great example of “minimum innovation, maximum results” (llya Sutskever, c.f. Pieter Abbeel)

Many post-training methods are simple variants of next-token prediction




Overaching Challenges

Pre-training as we know it will end N eXt'tO ken p red i Ctl On
S may be havi ng a

Better hargdware

- Better algonthms ° ° ° .
 Larorclustos diminishing return

Data is not growing

- We have but one internet

- The fossil fuel of Al which, to be fair, makes sense
because LLMs are already fairly good

~ Internet. We have, but one Internet. You could even say you can even go as far as to say.

That Qata is theﬁ fissi! fuel of Al. It was like, created somehow. And now we use it. | C a n We b e n d th e C u rve O n

remaining challenging tasks?




This Talk

® \What is Wrong with Next-token Prediction (LongPPL, ICLR’25)

® What is Wrong with Transformers (Emergence of Postion Bias, ICML'25)



One remaining challenge: long-context understanding

One potential reason: no (significant) correlation
between perplexity (NTP) and long-context performance
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Human-designed benchmarks:

L . , 48 eg RULER, LongEval, LongBench
1. Perplexity is not a reliable metric for evaluation
Implications: e

: . : . More data & human curation
2. NTP is not an efficient metric to optimize for

“Human, All Too human”’



When we curate data/benchmarks, what are we curating?

- line mindless-patrol: REGISTER_
CONTENT is <28352>

Prompt line tender-clause: REGISTER_
CONTENT is <45129>
Q: Tell me what is the <REGISTER_
- CONTENT> In line tender-clause?

Standard[ A: The <REGISTER_CONTENT> In
Responsel | [ine tender-clause Is
Non-answer tokens | An example from LongEval

LongEval is saying: Some tokens are more critical than others and we should focus on those



Perplexity on “key tokens”
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(b) PPL vs LongEval (Yi-6B) (¢) PPL vs LongEval (CLEX-7B)

We recover Perplexity’s correlation when evaluated only on answer tokens

1. Perplexity / next-token prediction is not the problem
Implications:

2. Why we really need humans -> select the tokens that we really care about for a task



The only technical question left

® How to identify key tokens from natural data without humans? An SSL problem!

® | esson: find tokens reflecting the model’s ability on long context

Sarah has a dog named reguires
\» leeel wng cpntext Log Probability Gain (LPG)

Sarah feels happy to play with Buddy.

—
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Interve ntIOn Most tokens do not require long context key tokens PH (5131, | SZ )
drop long context
01 06 01 « By selecting a good threshold, LPG can identify

-» Sarah feels happy to play with Buddy.

Short context

key tokens with 85.6% acc on LongEval



A little more technical nauance (optional)

® \What about the remaining 14.4%?

These tokens often have low log

Some non-answer tokens also have high LPG orob. values (LPV) - hard to fit
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(a) LPG of tokens on LongEval. (b) LPV of tokens on LongEval with large LPG

Combining LPV and LPG critiria, we can predict key tokens with 98.2% accuracy!




From PPL to LongPPL

® PPL: calculated on a uniform avg of all tokens

® | ong-context Perplexity (LongPPL): calculating perplexity on filtered key tokens

1 n
PPLy(x) = exp (_E > log P0($i|w<i))

1=1

LongPPL(x;6,0p) = exp (Z —IA(a:z'; 6o) log P9($i|$<i)) ,

i=1
1, if LSDy, (z;) > aand LCLy, (x) > 5;

where I(z;;600) = {0 otherwise.



From PPL to LongPPL

® | ongPPL (on natural data) correlates highly with long-context benchmarks
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® LongPPL is insensitive to the evaluator model (Llama-3.1-8B model suffices)

® Compared to benchmark eval like RULER, LongPPL gives real-world,
efficient & adaptive estimate for long-context performance on the fly

Now easy to use with "pip install longppl™ (see https:/github.com/PKU-ML/LongPPL)



https://github.com/PKU-ML/LongPPL

From PPL to LongPPL

® Others are also reporting LongPPL — better reveals the gains of your method

® You may think of it as the perplexity on “hard tokens”

Table 2: Perplexity on PG19 Long QA [He et al.,
2025]. Our simple A correction results 1n a signif-
icant drop in both PPL and Long PPL.

Method Long PPL| PPL |

Flash Attention 2 5.11 () 3.33 ()
Streaming LLM 7.02 (+1.91) 3.54 (+0.21)
Streaming LLM + A 5.96 (+0.85) 3.41 (+0.08)
HiP Attention 6.29 (+1.18) 3.48 (+0.15)

HiP Attention + A 5.45 (+0.34) 3.37 (+0.04)

From Delta Attention: Fast and Accurate Sparse Attention Inference by Delta Correction. 2025



Training: from CE to LongCE

® | ong-context Cross Entropy (LongCE) emphasizes key tokens softly (no reference)

1 n
n LongCE(z;0) = —— E Toost (243 0) log Py(x;|x ;).

1
CE(z;0) = - E log Py(x;|x<;). s

i—1 Isott (45 0) = min (exp (LSDg(x;)), v) = min (Pe (4] ) ’Y)

® LongCE as an Expectation-Maximization Process:

® [ step: contrastive estimate of token importance (latent var, unknown)

® M step: training models to maximize importance-weighted prediction

® In this way, LongCE bootstraps its own long-context prediction & estimate
® LongCE resembles RL training with fine-grained self-rewards

® No need for external rewards; more efficient than RL w/o online sampling



Training: from CE to LongCE

® | ongCE improves benchmark scores up to 22% over vanilla CE

50 LongEval Scores (higher the better) 65 0 RULER Scores (higher the better)
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Effective across different LLMs, such as Mistral-7B, LLama2-7B, Llama2-13B!




Training: from CE to LongCE

® Start to be adopted in recent works

® Found to be very effective for efficient
LLMs (even better than our experiments)

® Our guess: Efficient LLMs (due to limited
capability) require stronger training
signals to focus on key information

From RWKV-X: A Linear Complexity Hybrid Language Model

shows a steep drop in performance—falling to 67.0
on S-NIAH-2 and 62.6 on S-NIAH-3. In contrast,
the full model with LongCE maintains high accu-
racy at 99.8 and 95.6, respectively. These results

demonstrate that LongCE plays a crucial role in
helping the model focus on semantically important
tokens over extended contexts, thereby preserving
performance as sequence length increases.

Overall, LongCE significantly enhances the long-
context generalization ability of RWKV-X, espe-
cially in tasks where key information is sparsely
distributed across the input.

Table 4: Ablation Study on LongCE Loss using the S-
NIAH Benchmark (Higher is Better).

Model Task 1K 2K 4K 8K

RWKV-X-3.6B S-NIAH-1 100.0 100.0 100.0 100.0
w/o LongCE S-NIAH-1 100.0 100.0 100.0 100.0

RWKV-X-3.6B S-NIAH-2 100.0 100.0 100.0 99.8
w/o LongCE S-NIAH-2 100.0 100.0 984 67.0

RWKV-X-3.6B S-NIAH-3 100.0 100.0 99.8 95.6
w/o LongCE S-NIAH-3 100.0 100.0 98.4 62.6




Beyond Long Context

® Next-token prediction is biased because tokens are not generated equally

® this bias is more evident on challenging tasks, where we care about generating
certain steps/tokens correctly

® Besides RL/CoT, reweighted/focused next-token prediction as a general way out

® Improve signal-noise ratio efficiently on challenging tasks

® Contrastive estimate is a general methodology for identifying task-specific tokens

r(z;)

Target model; ideal performance
Py(zill) 8 p

N Pg($2|82)

4 Base model; original performance

For example, in knowledge distillation, the token relevance is calculated by contrasting teacher vs student

Lizhe Fang*, YW*. et al. What is Wrong with Perplexity for Long-context Language Modeling? ICLR 2024.



This Talk

® What is Wrong with Transformers (Emergence of Postion Bias, ICML'25)



LLMs are over-sensitive to context, esp if it’s long

® Sensitive to prompts
® Sensitive to ordering of in-context examples
® Sensitive to needle positions in the haystack

“attention sink” “lost in the middle”
Layer 2 Head 0

20 Total Retrieved Documents (~4K tokens)

s %

~
o

|
N
Accuracy

10

1st 5th 10th 15th 20th
Position of Document with the Answer

12
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— = gpt-3.5-turbo-0613 (closed-book)




Challenge: We don’t really understand how it arises

® Mysteries:

® What is the essential cause? Is it a good/bad/natural thing?

® |s it [imited to Transformers or applicable to other architectures as well?
® Potential benefits if we can understand:

® A guideline on designing Transformer variants to alleviating bias

® A guideline on designing PEs

® Speculations/Obstacles:

® Mixed effects of data, model, position encodings



First step: contrlled study on position bias

® Data: independent query-key pairs (no data bias)
® PEs: NoPE (pure causal mask), Decay Mask (Alibi), RoPE

No PE Decay Mask RoPE
0.120 1 1

depth 2
depth 6
depth 10

Accuracy Gap

ooooo
first vs. middle first vs. last middle vs. last first vs. middle first vs. last middle vs. last first vs. middle first vs. last middle vs. last

Figure 2: Position bias arising solely from the architectural design of the attention mechanism, with
no positional bias in the training data. a vs. b denotes the gap for the case |a, b] — |b, a], where bar

Observations:

1. Model is biased, with or without PE

2. Deeper model is more biased

3. Attention sink is more evident than recency bias



Why Position bias Emerge even w/o data bias?

input transformer block output

=x B

“#&  Attention is the core cause of position bias

Only attention mixes tokens!



Attention as a graph

® Attention induces an (adaptive) directed (computation) graph among tokens

are you doing today?

) p—
A %
How

doi today?

How are you doing

When model goes deeper, beginning tokens
gains more “overall” weights in Transformers

Observations:

1. First token is a central node (it can reach all nodes)
2. This is a very imbalanced graph (node degrees decrease significantly)
3. Imbalance accumulates as models become deeper




Attention as a graph

® Formaluation of multi-layer attention effect on context aggregation

N
Xi(,t:+1) i Z(A(t) A0, XJ{,O;)WS)) .. Wét)
1=1
Context aaareaator
P (z; = 5| X)) £(t) (X§?7):)

Context selector

The overall contribution of each context token



Attention sink, derived - causal mask / NoPE
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‘ Layer-wise attention sink
Layer 2 Head 0

" Theorem For each token i, |

0

2

lim P (z; = 1|1 X)) =1

{— 00

The impact of tokens j > 1 exponentially decay with attention depth

6 8 10 12 14

P (z = j|X) <C(1—(j —1)e)

Context-level “attention sink”

No PE
0120

0.125 1
0.099
0.081
5 -
0.053

0.050 0.049
0.025 I
0.000 =---

Generalizable to sliding window and prefix Transformers (skipped)

Accuracy Gap

first vs. middle first vs. last middle vs. last



Influence of Position Encoding?

® Most attention PEs encode recency bias to attention weights (eg AliBi)

jq(t)

decay

q1 - k1

= softmaxg(XOWY (XOWP)T + D). |=rmk

g3 k1 Q3 k2 g3 k3
—(E—jm ifj<q
— 00 otherwise

Qa K1 Qs -k Qs K3 Qa:Ka

Qs Ky Qs ky gs K3 Qs Ka Gs - ks

essentially it rewires the graph




Layer-wise influence of PEs
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' Theorem

Decay mask

Cmine—(i—j)m (A(t)

decay)’bj < Cmaxe_ S

" ROPE (d=2) [need some regularity conditions on original angles and sequence

Cmine_c(i_j)QQ% < (Ag)PE)ZJ < Omaxe_c (=) 92

Observation:

Since 61 is typically chosen to be small, the decay effect induced by RoPE
should be significantly smaller compared to that of the decay mask.
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Lost in the middle, derived
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Theorem (combined effect of causal mask and PE at depth)

Decay mask

RoPE (d=2)

N e e e e e e e e e e e e e e e e e e e e e o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e = e = — =

e Deeper models become more biased toward initial tokens.

* Increasing the decay strength m or base rotational angle amplifies the long-term
decay effect and causes tokens to focus more on nearby tokens.

letx =1 —J



Summary

Empirical Observations on Position Bias Our Results
Positional information induced by the causal mask (Barbero et al., 2024a; Kazemnejad et al., 2023; Wang et al., 2024) Theorem 4.1, Section 5.2
Decay effects induced by relative PEs (Su et al., 2023) Lemma 4.4-4.6, Section 5.1
Interplay between the causal mask and relative PEs (Wang et al., 2024) Theorem 4.5-4.7, Section 5.1
Attention sinks (Gu et al., 2025; Xiao et al., 2024) Theorem 4.1-4.3, Appendix K.2
The “lost-in-the-middle” phenomenon (Liu et al., 2024) Section 5.2

® Position bias is essentially caused by the graph structure of attention

® NOoPE (causal mask) has its own position bias

® PEs can make models more sensitive to data bias

® A good PE / Transformer variant should be able to derive a balanced graph

Xinyi Wu, YW, Stefanie Jegelka, and Ali Jadbabaie. On the Emergence of Position Bias in Transformers. ICML 2025.



Final thoughts

® Next-token prediction and Transformers might be good (enough) for curve fitting

® But if we want more than distr. matching (capability, robustness), we need to
® Redistribute the token/sequence rewards for efficient training

® Debiase Architectures

® Thinking LLMs as “Large Context Model” helps

® A unified perspective of data molidaties, and understanding/reasoning tasks

® It’s all about contextualized prediction/representation

YW*, Yuyang Wu*, Zeming Wei, Stefanie Jegelka, and Yisen Wang. A Theoretical Understanding of Self-Correction through In-context Alignment. NeurlPS 2024.



