Parallelizing “Inherently Sequential” Processes

Parallel Newton methods for nonlinear state space models

Xavier Gonzalez and Leo Kozachkov, ASAP seminar, 9/30



State Space Model

S, = S8~ 1)
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State space models are everywhere
.L L@ r = f(5.0)

* Nonlinear Recurrent Neural Networks (GRU, LSTM and family)
 Markov chain Monte Carlo
 |terative optimization techniques (like gradient descent)

* The blocks of a transformer model in depth (“recurrent depth” as in
Schone et al and Geipeng et al '25)

o Sampling from a diffusion model



Problem: people thought nonlinear SSMs
were Inherently sequential
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Not good for GPU p lization!
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We can parallelize nonlinear SSMs!



DEER: Differential Equation as fixed point itERation

Accepted as a conference paper at ICLR 2024

DeepPCR: Parallelizing Sequential Operations in
Neural Networks
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Parallelization techniques have become ubiquitous for accelerating inference and
training of deep neural networks. Despite this, several operations are still performed
ABSTRACT in a sequential manner. For instance, the forward and backward passes are executed
layer-by-layer, and the output of diffusion models is produced by applying a
sequence of denoising steps. This sequential approach results in a computational

Sequential models, such as Recurrent Neural Networks and Neural Ordinary Dif- cost proportional to the number of steps involved, presenting a potential bottleneck

ferentia! Equations, have long suffer'ed from slow training due to their inherent as the number of steps increases. In this work, we introduce DeepPCR, a novel
sequent}al nature. For many years this bpttleneck has pers1steq, as many thought algorithm which parallelizes typically sequential operations in order to speed up
seguentlal models cou}d not be parallelized. We challel.lge this long—l}eld belief inference and training of neural networks. DeepPCR is based on interpreting a
with our parallel algonthrp that accelergtes GPU evalug‘qon of sequential models sequence of L steps as the solution of a specific system of equations, which we
by up to 3 orders of magnitude faster without compromising output accuracy. The recover using the Parallel Cyclic Reduction algorithm. This reduces the complexity
algorithm does not need any special structure in the sequential models’ architec- of computing the sequential operations from O(L) to O(log, L), thus yielding a
ture, making it applicable to a wide range of architectures. Using our method, speedup for large L. To verify the theoretical lower complexity of the algorithm,
training sequential models can be more than 10 times faster than the common se- and to identify regimes for speedup, we test the effectiveness of DeepPCR in
quential method without any meaningful difference in the training results. Lever- parallelizing the forward and backward pass in multi-layer perceptrons, and reach
aging this accelerated training, we discovered the efficacy of the Gated Recurrent speedups of up to 30x for the forward, and 200x for the backward pass. We
Unit in a long time series classification problem with 17k time samples. By over- additionally showcase the flexibility of DeepPCR by parallelizing training of
Coming the training bottleneck, our work serves as the first Step to unlock the ResNets with as many as 1024 layers, and generation in diffusion models, enabling

potential of non-linear Sequential models for long sequence problemS. up to 7x faster trainjng and 11 x faster generatiOn, reSpeCtively, when Compared to
the sequential approach.

1 INTRODUCTION
1 Introduction

Parallelization is arguably a main workhorse in driv-
ing the rapid progress in deep learning over the Neural Networks (NNs) have proven very effective at solving complex tasks, such as classification

(0) 1,,(0) (0)
past decade. Through specialized hardware acceler- o |7 z

0 e [26, 14], segmentation [5, 30], and image or text generation [26]. Training NNs, however, is a
ators such as GPU and TPU, matrix multiplications ({) ({) (‘l) (‘1 ; computationally demanding task, often requiring wall-clock times in the order of days, or even weeks
which are prevalent in deep learning can be eval- Zy |2y |2, |23 [35, 18], before attaining satisfactory results. Even inference in pre-trained models can be slow,
uated swiftly, enabling rapid trial-and-error in re- | jerat:untifconvt e particularly when complex architectures are involved [4]. To reduce training times, a great effort has

& been invested into speeding up inference, whether by developing dedicated software and hardware [7,

search. Despite the widespread use of parallelization VLol ; e ot . .
in deep learning, sequential models such as Recur- P T P e 22, 23], or by investigating algorithmic techniques such as (early) pruning [28, 40, 20, 27, 43, 9].

rent Neural Networks (RNN) (Hochreiter & Schmid- Another possibility for reducing wall-clock time, and the one we focus on in this work, consists in par-

huber, 1997; Cho et al., 2014) and Neural Ordinary allelizing computations that would otherwise be performed sequentially. The most intuitive approach

Differential Equations (NeuralODE) (Chen et al., (b) to parallelization involves identifying sets of operations which are (almost entirely) independent,

2018; Kidger et al., 2020) have not fully benefited and executing them concurrently. Two paradigms that follow this principle are data-parallelization,
where multiple datapoints are processed simultaneously in batches; and model-parallelization, where

Figure 1: Evaluating sequential models us- the model is split among multiple computational units, which perform their evaluations in parallel [1].

ing (a) sequential method and (b) iterative

Serial evaluations have become the bottleneck in method that is parallelizable.

training sequential deep learning models. This bot-

tleneck might have diverted research away from se-

from it due to their inherent need for serial evalua-
tions over sequence lengths.

Still, certain operations which are key for training and inference in NNs have a sequential struc-
ture. The forward and backward pass of a NN are examples of such operations, where activations

37th Conference on Neural Information Processing Systems (NeurIPS 2023).




Sequential vs. Parallel (lterative) Evaluation

HNOOOS @@@@
+As(1)
Complete in @@‘ “ @@@ @@ Complete in

exactly T at most T
sequential v +as® L) sequential

terate until convergence gteps,

Sequence length T =4



A simple demo: parallelizing a vanilla RNN

Sequential Parallel (DEER)

= w Sequential Parallel (DEER)
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How is this working?



The secret sauce: parallel associative scan

Consider a linear SSM

St — AtSt—l + bt

(AgA3As A1, AyAsAsby + Ay Asby + Aybs + by)

With sufficient parallel processors, we can evaluate a linear SSM in O(log T') time. (Blelloch, '90)



What about an arbitrary SSM?

Goal: parallelize nonlinear SSMs like nonlinear RNNs and MCMC

Problem: How do we get the pscan to work for arbitrary nonlinear dynamics f

Crazy idea: What if we just alternatively:

1. Linearize the nonlinear dynamics f around current guesses for the states S(li-)T

(i+1)

2. Evaluate the linearized dynamics in parallel to get new guesses S\ .7

This crazy idea is DEER!

DEER is equivalent to Gauss-Newton optimization



DEER 1s so cool!
But of course 1t has limitations.



Limitation #1: Scalability and Stability

Solution:

Towards Scalable and Stable Parallelization of Nonlinear RNNS

Scalability:
+ Diagonal Jacobian

E———————

+ Trust region

Xavier Andrew Jimmy Scott + Kalman filter
Gonzalez Warrington Smith Linderman Quasi-ELK

Stability: DEER I Quasi-DEER




Limitation #2: Provable Guidance
When to use DEER?

Solution:

Predictability Enables Parallelization of Nonlinear SSMs

Unpredictable

State Space State Space

Merit Function

Xavier Leo David Kenneth Scott
Gonzalez* Kozachkov* Zoltowski Clarkson Linderman




Outline
1. Introduction to DEER (Leo)
 DEER is the Gauss-Newton method
* Parallelization comes from the parallel scan (Blelloch ’90)

2. Scaling and Stabilizing DEER (Xavier)

Scalability:
+ Diagonal Jacobian

- >

Stability:
+ Trust region
+ Kalman filter




1. Introduction to DEER



How to Parallelize Nonlinear SSMs

Convert The Forward Pass to an Optimization Problem

e Start with an initial state s, € R”

 Write down an loss function that
has the “true” trajectory as a
solution, I.e.,

=0 = s5,=/(s_;)

 Find a way to very quickly
optimize this loss function, so

that evaluation is faster than
sequential.

Sequential Evaluation of nSSM

() - @

Optimization-Based Evaluation of nSSM




How to Parallelize Nonlinear SSMs

Converting The Forward Pass to an Optimization Problem

s, = tanh(Ws,_; + u,)

We want to find a sequence of states that satisfy si =15 ) 50

Define the deviation from desired by a residual: r,=s5,—f(s,_1)

Find an optimizer that minimizes the sum-of-squares loss: & = |Ir{|I* + IlI° + ... + |l77ll°

Note that when the loss is zero, the original nonlinear SSM equation is verified



Fast Optimization-Based Evaluation

Gauss-Newton Algorithm

* [reat the whole trajectory as an optimization variable s € R

« Gauss-Newton step As = — J7I(s) r(s)

* Naively, inverting this matrix is very hard. But using the special structure of
the problem, parallel scans come to the rescue!

As, = J(s,_1)As,_ — 1, O(log(T))

S0 each step of GN can be parallelized—but what controls the number of
steps? More on this later!



Each DEER step is a linear SSM!

o+ — £0c@0) @) G+ _ @)
3 (S )+] ( -1 St—l)

. procedure DEER(f, sj, initial guess 5(1(;)21", tolerance €)

fori =0,1,...,T do |
J1.7 < LINEARIZEDYNAMICS( f, sg:)T
D) §(0)

S,.7 < PARALLELSCAN(J;.7, f, 857

break

end for
return s
. end procedure

(i+1)
1:T

1
2
3
4
5: if COMPUTEERROR(f, s(l“)) < € then
6
7
8
9




DEER recap

1. Make an initial guess S(IO)T for the states @@@ @@
+As(1)g

2. Linearize C}]ge dynamics: evaluate @@@@@

JO = (s ) for all ¢
t dsi_y "7

G +AsP) @

terate until convergence

3. Evaluate the resulting linear SSM using a d +as® 0

parallel associative scan to get the Gauss-
Newton step As” @@@ @@




2. How to improve DEER?
Scalability and Stability

“Toward Stable and Scalable Parallelization of Nonlinear RNNs.”

Gonzalez, Warrington, Smith, Linderman.
NeurlPS '24. https://arxiv.org/abs/2407.19115

Code: https://github.com/lindermanlab/elk




DEER limitations O ORIOs

sGHD = (5 )4 ( (D) 0 )

! —1 —1

Problems
. Compute: O(TD?) work
. Memory: O(TD?) memory

e Stability: Imagine if many J, have big eigenvalues!



The ungulates

Trust region
Kalman filter

Scalability:

+ Diagonal Jacobian

———
Quasi-DEER

uasi-ELK

Method
Parallel

Sequential No

DEER Yes
Quasi-DEER Yes
ELK Yes
Quasi-ELK Yes

Desiderata

Memory

O(D)

Stability
Very high

Low
Low
High
Moderate




Scalability: quasi-Newton methods

@ quasi-DEER:

ngﬂrl) £




Global Convergence of DEER and quasi-DEER

Proposition 1 of Gonzalez et al, ’24

Both DEER and quasi-DEER converge to the true solution ST’T in

at most / Newton iterations, for any initial guess s(l(?)T

* |n general problems, Gauss-Newton can fail to converge

* This result is specific to using GN on a loss function coming from one-
step prediction errors (i.e. r, = s, — f(5,_)



Proof of Proposition 1 by Induction

@A - @

D = £ (59) 4 Ty (554D = 50)

) - - 4

Ast
» Assume that at iteration (1), for all # < i, we have S(l) =

» Then As, =0 forallt < 1.

. So, s = £, (1) = fiy (sF) = s

- - (7) — o
« By induction, S\ =871



Global Convergence has powerful consequences

Consequences of the Proof of Proposition 1

» We can work with arbitrary approximations to J,.
» Quasi-DEER uses diag(J/,) for simplicity.

» We can even work with nondifferentiable f via surrogate gradient tricks

 For example: accept-reject steps in MCMC! As in “Parallelizing MCMC over the
sequence length,” Zoltowski*, Wu*, Gonzalez, Kozachkov, Linderman.

* Could be useful in other discrete settings (autoregressive token generation)

 Because the proof is by induction, we can reset later steps in the trace to
arbitrary values and still get global convergence (useful for numerical overflows)



Wallclock Time and Memory

Forward pass (inference)

Benchmarking
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Quasi-DEER for Training

“Eigenworms” task, 7'= 17,984, longest task from UEA MTSC dataset
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Architecture: 5 layer GRU, hidden state size of D = 32



Quasi-DEER and DEER can be unstable

Training a GRU to generate a sine wave
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Trust region optimization (Levenberg-Marquardt)
Chapter 4 of Numerical Optimization by Nocedal and Wright

... Trustregion

Gauss-Newton update

quadratic surrogate

Trust region step
contours of L




ELK

valuating evenberg-Marquardt with “alman

Trust region approach (Levenberg-Marquardt) can be reformulated as
the solution to a Kalman smoother

Kalman smoothers can be evaluated in parallel! (Sarkka and Garcia-
Fernandez ’20)



ELK Results
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Ungulates struggle to parallelize oscillations

Algorithm Average time per Number of New- Total time
Newton iteration ton iterations to convergence
+ std (ms) convergence (ms)

Sequential Evaluation
Sequential NA NA 06.2
Parallelized Methods

DEER 0.282 £ 0.0005
quasi-DEER  0.087 £ 0.0002
ELK 3.600 £ 0.067

quasi-ELK 0.141 4 0.0004




Parallelizing at the edge of stability

Do | just need a
* Bigger machine?
* Longer sequence”?

e Smarter approach?

Or are there limits on what sequences | can efficiently parallelize?



3. When to use DEER?
Parallelize stable systems.
Do NOT parallelize unstable systems.

“Predictability Enables Parallelization of Nonlinear State Space Models.”

Gonzalez*, Kozachkov*, Zoltowski, Clarkson, Linderman 25
https://arxiv.org/abs/2508.16817



Parallelize Stable Systems

Sequentially Evaluate Unstable Ones

Unpredictable

State Space W
{




Definition: Predictability and Unpredictability
of

0S;_1

Consider an SSM s, = f,(s,_) with derivatives J, :=

The Largest Lyapunov Exponent (LLE or A) of this SSM is

|
LLE := Iim — lo JoJr .. ) .
s g(H 7971 1||)

The displacement between trajectories scales as
Is, = s{ll ~ eIl so — sl
e A < 0: predictable

e A > 0: unpredictable



SSM Stability Determines Loss Landscape
Remember the loss function we wanted to minimize?

I 2
Z©1.0) = Sl

The stability of an SSM (measured by its LLE A) controls
the flatness of its corresponding loss function

Unpredictable

W
L




Geometry of Instability

\Dig
e L
SSemRzse

Easy to Optimize - Hard to Optimize



How do we quantify flathess?

Polyak-tojasiewicz or PL constant

The PL condition requires that the gradient never get too small relative to the loss:

I 2
SIVZIT 2 pt

Proposition (Nesterov and Polyak, '06)

The PL constant u of £ is given by
u = inf Gﬁlin.] (S)
S

Proposition (Karimi et al, ’20)

Since £ is PL, gradient descent converges at linear rate.
The precise rate is controlled by the value of the PL constant u.



Predictability Enables Parallelization

Theorem (Gonzalez*, Kozachkov*, et al, ’25)

(Informal). Under regularity assumptions,

et — 1 |

— < /u< .
AT _ 1] o A(T—1)

. As T — 00, lower bound of W

. llm u=0
approaches 1 — e* T— o0
» So 4/ is bounded away from O, » Loss conditioning / rate of
rate of convergence doesn’t convergence degrades exponentially
degrade with T quickly with '

* You should parallelize! * You should not parallelize



Predictability Enables Parallelization

Theorem (Gonzalez*, Kozachkov*, et al, ’25)

(Informal). Under regularity assumptions,

y)
et — 1 |
< \/ﬁ < |
AT — 1 o MT—1)
Proof Sketch

° Gmin(J) — 1/Umax(']_l)
e In the setting where T"' = 4,

I, 0 0 O
J, I, 0 0
ILJ, J, I, O
Ly Judy Jy I

J =



Empirical Evidence in a Parametric Family of RNNs

Experiment
(steps to convergence) Experiment: T = 954

steps to convergence

—0.6 -0.4—-0.2 0.0 —0.6 -0.4—-0.2 0.0 —0.6 -0.4-0.2 0.0

LLE ()\) LLE ()\) LLE ()

Quasi-DEER Gradient Descent Sequential

steps to convergence




Summary

1. Markov processes (nonlinear RNNs, Markov chain Monte Carlo, sequential
evaluation of transformer blocks, ...) are everywhere in machine learning,

and DEER can parallelize them

2. Use quasi-Newton approaches at scale

3. The ungulates work for stable (contractive) systems. If you have a stable
dynamical system, you should parallelize it. Also, you should design systems

to be stable if you want to parallelize them.







