
Xavier Gonzalez and Leo Kozachkov, ASAP seminar, 9/30

Parallelizing “Inherently Sequential” Processes

Parallel Newton methods for nonlinear state space models

￼st = ft(st−1)
State Space Model

State space models are everywhere

• Nonlinear Recurrent Neural Networks (GRU, LSTM and family)

• Markov chain Monte Carlo

• Iterative optimization techniques (like gradient descent)

• The blocks of a transformer model in depth (“recurrent depth” as in
Schone et al and Geipeng et al ’25)

• Sampling from a diffusion model

• …

st = ft(st−1)

Problem: people thought nonlinear SSMs
were inherently sequential

Not good for GPU parallelization!

We can parallelize nonlinear SSMs!

DEER: Differential Equation as fixed point itERation

Sequential vs. Parallel (Iterative) Evaluation

How is this working?

A simple demo: parallelizing a vanilla RNN

The secret sauce: parallel associative scan
Consider a linear SSM

￼st = Atst−1 + bt

With sufficient parallel processors, we can evaluate a linear SSM in ￼ time. (Blelloch, ’90)𝒪(log T)

What about an arbitrary SSM?
Goal: parallelize nonlinear SSMs like nonlinear RNNs and MCMC

Problem: How do we get the pscan to work for arbitrary nonlinear dynamics ￼f

Crazy idea: What if we just alternatively:

1. Linearize the nonlinear dynamics ￼ around current guesses for the states ￼

2. Evaluate the linearized dynamics in parallel to get new guesses ￼

f s(i)
1:T

s(i+1)
1:T

This crazy idea is DEER!

DEER is equivalent to Gauss-Newton optimization

DEER is so cool!
But of course it has limitations.

Limitation #1: Scalability and Stability
Solution:
Towards Scalable and Stable Parallelization of Nonlinear RNNS

Xavier
Gonzalez

Andrew

Warrington

Jimmy

Smith

Scott

Linderman

Limitation #2: Provable Guidance
When to use DEER?

Solution:
Predictability Enables Parallelization of Nonlinear SSMs

Xavier
Gonzalez*

Leo
Kozachkov*

David

Zoltowski

Scott

Linderman

Kenneth

Clarkson

Outline
1. Introduction to DEER (Leo)

• DEER is the Gauss-Newton method

• Parallelization comes from the parallel scan (Blelloch ’90)

2. Scaling and Stabilizing DEER (Xavier)

3. When to use DEER (Leo)

1. Introduction to DEER

How to Parallelize Nonlinear SSMs
Convert The Forward Pass to an Optimization Problem

• Start with an initial state

• Write down an loss function that
has the “true” trajectory as a
solution, i.e.,

• Find a way to very quickly
optimize this loss function, so
that evaluation is faster than
sequential.

ℒ(s)

s =

s1
s2
⋮
sT

∈ ℝTD st

st−1

Sequential Evaluation of nSSM

Optimization-Based Evaluation of nSSM
s0 ∈ ℝD

ℒ = 0 ⟺ st = ft(st−1)

How to Parallelize Nonlinear SSMs
Converting The Forward Pass to an Optimization Problem

st = tanh(Wst−1 + ut)

s*t = ft(s*t−1) s0We want to find a sequence of states that satisfy

Define the deviation from desired by a residual: rt = st − ft(st−1)

Find an optimizer that minimizes the sum-of-squares loss: ℒ = ∥r1∥2 + ∥r2∥2 + . . . + ∥rT∥2

Note that when the loss is zero, the original nonlinear SSM equation is verified

Fast Optimization-Based Evaluation
Gauss-Newton Algorithm

• Treat the whole trajectory as an optimization variable

• Gauss-Newton step

• Naively, inverting this matrix is very hard. But using the special structure of
the problem, parallel scans come to the rescue!

• So each step of GN can be parallelized—but what controls the number of
steps? More on this later!

s ∈ ℝTD

Δs = − J−1(s) r(s)

Δst = Jt(st−1) Δ st−1 − rt 𝒪(log(T))

Each DEER step is a linear SSM!
￼s(i+1)
t = ft(s(i)

t−1) + J(i)
t (s(i+1)

t−1 − s(i)
t−1)

DEER recap
1. Make an initial guess ￼ for the states

2. Linearize the dynamics: evaluate

￼ for all ￼

3. Evaluate the resulting linear SSM using a
parallel associative scan to get the Gauss-
Newton step ￼

s(0)
1:T

J(i)
t :=

dft
dst−1

(s(i)
t−1) t

Δs(i)

2. How to improve DEER?
Scalability and Stability
“Toward Stable and Scalable Parallelization of Nonlinear RNNs.”

Gonzalez, Warrington, Smith, Linderman.

NeurIPS ’24. https://arxiv.org/abs/2407.19115

Code: https://github.com/lindermanlab/elk

DEER limitations

Problems

• Compute: ￼ work

• Memory: ￼ memory

• Stability: Imagine if many ￼ have big eigenvalues!

𝒪(TD3)

𝒪(TD2)

Jt

￼s(i+1)
t = ft(s(i)

t−1)+ J(i)
t⏟

∈ℝD×D

(s(i+1)
t−1 − s(i)

t−1)

The ungulates

Scalability: quasi-Newton methods

Global Convergence of DEER and quasi-DEER
Proposition 1 of Gonzalez et al, ’24

Both DEER and quasi-DEER converge to the true solution ￼ in
at most ￼ Newton iterations, for any initial guess ￼

s*1:T
T s(0)

1:T

• In general problems, Gauss-Newton can fail to converge

• This result is specific to using GN on a loss function coming from one-
step prediction errors (i.e. ￼rt = st − f(st−1)

Proof of Proposition 1 by Induction

￼
s(i+1)
t+1 = ft+1(s(i)

t) + Jt+1 (s(i+1)
t − s(i)

t)
Δst

• Assume that at iteration ￼ , for all ￼ , we have ￼ .

• Then ￼ for all ￼ .

• So, ￼

• By induction, ￼

(i) t ≤ i s(i)
t = s*t

Δst = 0 t ≤ i

s(i+1)
i+1 = fi+1(s(i)

i) = fi+1(s*i) = s*i+1

s(T)
1:T = s*1:T

Global Convergence has powerful consequences

• We can work with arbitrary approximations to ￼ .

• Quasi-DEER uses ￼ for simplicity.

• We can even work with nondifferentiable ￼ via surrogate gradient tricks

• For example: accept-reject steps in MCMC! As in “Parallelizing MCMC over the
sequence length,” Zoltowski*, Wu*, Gonzalez, Kozachkov, Linderman.

• Could be useful in other discrete settings (autoregressive token generation)

• Because the proof is by induction, we can reset later steps in the trace to
arbitrary values and still get global convergence (useful for numerical overflows)

Jt

diag(Jt)

f

Consequences of the Proof of Proposition 1

Benchmarking Wallclock Time and Memory
Forward pass (inference)

Quasi-DEER for Training
“Eigenworms” task, ￼ , longest task from UEA MTSC dataset T = 17,984

Architecture: 5 layer GRU, hidden state size of ￼D = 32

Quasi-DEER and DEER can be unstable
Training a GRU to generate a sine wave

Trust region optimization (Levenberg-Marquardt)
Chapter 4 of Numerical Optimization by Nocedal and Wright

ELK
Evaluating Levenberg-Marquardt with Kalman

Trust region approach (Levenberg-Marquardt) can be reformulated as
the solution to a Kalman smoother

Kalman smoothers can be evaluated in parallel! (Sarkka and Garcia-
Fernandez ’20)

ELK Results

Ungulates struggle to parallelize oscillations

Parallelizing at the edge of stability
Do I just need a

• Bigger machine?

• Longer sequence?

• Smarter approach?

Or are there limits on what sequences I can efficiently parallelize?

3. When to use DEER?
Parallelize stable systems.
Do NOT parallelize unstable systems.

“Predictability Enables Parallelization of Nonlinear State Space Models.”

Gonzalez*, Kozachkov*, Zoltowski, Clarkson, Linderman ’25

https://arxiv.org/abs/2508.16817

Parallelize Stable Systems
Sequentially Evaluate Unstable Ones

Definition: Predictability and Unpredictability
Consider an SSM ￼ with derivatives ￼ .

The Largest Lyapunov Exponent (LLE or ￼) of this SSM is

￼

The displacement between trajectories scales as

￼

• ￼ : predictable

• ￼ : unpredictable

st = ft(st−1) Jt :=
∂ft

∂st−1

λ

LLE := lim
T→∞

1
T

log (∥JTJT−1 . . . J1∥) .

∥st − s′￼t∥ ∼ eλt∥s0 − s′￼0∥.

λ < 0

λ > 0

SSM Stability Determines Loss Landscape
Remember the loss function we wanted to minimize?

￼ℒ(s1:T) =
1
2

∥r(s1:T)∥2.

The stability of an SSM (measured by its LLE ￼) controls

the flatness of its corresponding loss function

λ

Geometry of Instability

Hard to OptimizeEasy to Optimize

How do we quantify flatness?
Polyak-Łojasiewicz or PL constant

The PL condition requires that the gradient never get too small relative to the loss:

￼
1
2

∥∇ℒ∥2 ≥ μℒ .

Proposition (Nesterov and Polyak, ’06)

The PL constant ￼ of ￼ is given by

￼

μ ℒ

μ = inf
s

σ2
minJ(s)

Proposition (Karimi et al, ’20)

Since ￼ is PL, gradient descent converges at linear rate.

The precise rate is controlled by the value of the PL constant ￼ .

ℒ
μ

Predictability Enables Parallelization
Theorem (Gonzalez*, Kozachkov*, et al, ’25)

(Informal). Under regularity assumptions,

￼ .
eλ − 1
eλT − 1

≤ μ ≤
1

eλ(T−1)

Predictable/Stable Systems ￼

• As ￼ , lower bound of ￼
approaches ￼

• So ￼ is bounded away from 0,
rate of convergence doesn’t
degrade with ￼

• You should parallelize!

(λ < 0)
T → ∞ μ

1 − eλ

μ

T

Unpredictable/Unstable Systems ￼

• ￼

• Loss conditioning / rate of
convergence degrades exponentially
quickly with ￼

• You should not parallelize

(λ > 0)

lim
T→∞

μ = 0

T

Predictability Enables Parallelization
Theorem (Gonzalez*, Kozachkov*, et al, ’25)

(Informal). Under regularity assumptions,

￼ .
eλ − 1
eλT − 1

≤ μ ≤
1

eλ(T−1)

Proof Sketch

• ￼

• In the setting where ￼

￼

σmin(J) = 1/σmax(J−1)
T = 4,

J−1 =

ID 0 0 0
J2 ID 0 0

J3J2 J3 ID 0
J4J3J2 J4J3 J4 ID

Empirical Evidence in a Parametric Family of RNNs

Summary
1. Markov processes (nonlinear RNNs, Markov chain Monte Carlo, sequential

evaluation of transformer blocks, …) are everywhere in machine learning,
and DEER can parallelize them

2. Use quasi-Newton approaches at scale

3. The ungulates work for stable (contractive) systems. If you have a stable
dynamical system, you should parallelize it. Also, you should design systems
to be stable if you want to parallelize them.

