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Part 1. Associative Memory and Its Capacity 

Part 2. Update the Associative Memory

Part 3. Exploration of Next Generation Models 

Overview

2



Before We Start

There is a contradiction between expressiveness and parallelism.

𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛

Q1: If you can add any two numbers in parallel each time, how much 
time do we need to calculate the sum of 𝑛 elements ?
The answer is. O(log1𝑛).

Q2:If you can add any two numbers in parallel each time, how much 
time do we need to calculate the add of two matrix with size 𝑛 × 𝑛?
The answer is 𝑂 1 = 𝑂(log0 𝑛).

𝐴 + 𝐵

𝑇𝑖𝑚𝑒: 𝑄1 > 𝑄2

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡𝑜𝑡𝑎𝑙:  𝑄1 < 𝑄2
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Before We Start

There is a contradiction between expressiveness and parallelism.

𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛

Q1: If you can add any two numbers in parallel each time, how much 
time do we need to calculate the sum of 𝑛 elements ?
The answer is. O(log1𝑛).

Q2:If you can add any two numbers in parallel each time, how much 
time do we need to calculate the add of two matrix with size 𝑛 × 𝑛?
The answer is 𝑂 1 = 𝑂(log0 𝑛).

𝐴 + 𝐵

𝑂(log𝑖 𝑛).2
𝑢𝑛𝑙𝑖𝑚𝑖𝑡𝑒𝑑

𝐴𝑛𝑑, 𝑂𝑟, 𝑁𝑜𝑡 𝑔𝑎𝑡𝑒

𝐴𝑛𝑑, 𝑂𝑟, 𝑁𝑜𝑡, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑔𝑎𝑡𝑒𝑠

𝑁𝐶𝑖

𝐴𝐶𝑖

𝑇𝐶𝑖
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Before We Start

There is a contradiction between 
expressiveness and parallelism.

Problem can solve 

without COT

𝐿𝑂𝐺𝐶𝐹𝐿

𝑁𝐶1

𝑃

…

𝑁𝐶2

𝑁𝐿

𝑆𝐿

𝑇𝐶0

𝐴𝐶0

𝑁𝐶0

𝑀𝑎𝑡𝑟𝑖𝑥 𝐼𝑛𝑣𝑒𝑟𝑠𝑒

𝑆5, 𝑃𝑦𝑡ℎ𝑜𝑛, 𝐶ℎ𝑒𝑠𝑠

𝑃𝑎𝑟𝑖𝑡𝑦 𝐶ℎ𝑒𝑐𝑘

𝑆𝑇𝐶𝑂𝑁

𝑈𝑆𝑇𝐶𝑂𝑁

𝐴𝑐𝑦𝑐𝑙𝑖𝑐 𝐵𝐶𝑄

𝑈𝑛𝑎𝑟𝑦 𝐿𝑎𝑛𝑔𝑢𝑎𝑔𝑒

𝐿𝑖𝑛𝑒𝑎𝑟 𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝑚𝑖𝑛𝑔

…

𝐴𝑑𝑑 𝐵𝑜𝑜𝑙 𝑀𝑎𝑡𝑟𝑖𝑥

Where is the popular model, such as Transformer?

The parallelism tradeoff: Limitations of log-precision transformers. TACL 2023.
Chain of Thought Empowers Transformers to Solve Inherently Serial Problems. Arxiv 2024.

Parallelism
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expressiveness and parallelism.

Problem can solve 

without COT
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𝑁𝐶1

𝑃

…

𝑁𝐶2

𝑁𝐿

𝑆𝐿

𝑇𝐶0
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𝑃𝑎𝑟𝑖𝑡𝑦 𝐶ℎ𝑒𝑐𝑘

𝑆𝑇𝐶𝑂𝑁

𝑈𝑆𝑇𝐶𝑂𝑁

𝐴𝑐𝑦𝑐𝑙𝑖𝑐 𝐵𝐶𝑄

𝑈𝑛𝑎𝑟𝑦 𝐿𝑎𝑛𝑔𝑢𝑎𝑔𝑒

𝐿𝑖𝑛𝑒𝑎𝑟 𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝑚𝑖𝑛𝑔

…

𝐴𝑑𝑑 𝐵𝑜𝑜𝑙 𝑀𝑎𝑡𝑟𝑖𝑥

Where is the popular model, such as Transformer?

𝑇𝐶0 𝑜𝑟 𝐴𝐶0 (log or constant precision )

The parallelism tradeoff: Limitations of log-precision transformers. TACL 2023.
Chain of Thought Empowers Transformers to Solve Inherently Serial Problems. Arxiv 2024.

Parallelism
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Before We Start

One the most important reason that Transformer beat RNN:

GPUs + High Parallelism
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Before We Start

One the most important reason that Transformer beat RNN:

GPUs + High Parallelism

Is there a model with more expressiveness than  
transformer but also can be parallelized in GPUs ? 

However, we know that there is a contradiction between 
expressiveness and parallelism.
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Before We Start

DeltaNet:  A model which beyond 𝑇𝐶0

1980s and 1990s

https://web.cs.umass.edu/publication/docs/1980/UM-CS-1980-018.pdf

𝑊𝑃𝑡+1 = 𝑊𝑃𝑡 + 𝑐𝑝 𝑍𝑡 − 𝑊𝑃𝑡−1𝑤𝑡−1 𝑥𝑡−1
⊤

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=2f0becffd2f44b198d28074d01722e4c7905dae2

https://www.cs.toronto.edu/~fritz/absps/fastweights.pdf

2020s

𝑆𝑡 = 𝑆𝑡−1 + 𝛽𝑡 𝑣𝑡 − 𝑆𝑡−1𝑘𝑡 𝑘𝑡
⊤

Parallelizing Linear Transformers with the Delta Rule over Sequence Length. NeurIPS 2024. 9

https://web.cs.umass.edu/publication/docs/1980/UM-CS-1980-018.pdf
https://web.cs.umass.edu/publication/docs/1980/UM-CS-1980-018.pdf
https://web.cs.umass.edu/publication/docs/1980/UM-CS-1980-018.pdf
https://web.cs.umass.edu/publication/docs/1980/UM-CS-1980-018.pdf
https://web.cs.umass.edu/publication/docs/1980/UM-CS-1980-018.pdf
https://web.cs.umass.edu/publication/docs/1980/UM-CS-1980-018.pdf
https://web.cs.umass.edu/publication/docs/1980/UM-CS-1980-018.pdf


Before We Start

DeltaNet:  A model which beyond 𝑇𝐶0

1980s and 1990s

𝑊𝑃𝑡+1 = 𝑊𝑃𝑡 + 𝑐𝑝 𝑍𝑡 − 𝑊𝑃𝑡−1𝑤𝑡−1 𝑥𝑡−1
⊤

2020s

𝑆𝑡 = 𝑆𝑡−1 + 𝛽𝑡 𝑣𝑡 − 𝑆𝑡−1𝑘𝑡 𝑘𝑡
⊤

Expect the internal output 𝑊𝑃𝑡−1𝑤𝑡−1/𝑆𝑡−1𝑘𝑡 to be consistent 
with the  feedback 𝑍𝑡/𝑣𝑡, and adjust the internal state 𝑊𝑃/𝑆 
based on the inconsistency (𝑍𝑡 −𝑊𝑃𝑡−1𝑤𝑡−1)/ 𝑣𝑡 − 𝑆𝑡−1𝑘𝑡

with a learning rate 𝑐𝑝/𝛽𝑡 .

Regarding this update rule, it can have expressive power beyond 𝑇𝐶0 . Readers can refer to RWKV-7 “Goose” with 
Expressive Dynamic State Evolution. Arxiv 2025. 10



Before We Start

DeltaNet:  A model beyond 𝑇𝐶0

1980s and 1990s

𝑊𝑃𝑡+1 = 𝑊𝑃𝑡 + 𝑐𝑝 𝑍𝑡 − 𝑊𝑃𝑡−1𝑤𝑡−1 𝑥𝑡−1
⊤

2020s

𝑆𝑡 = 𝑆𝑡−1 + 𝛽𝑡 𝑣𝑡 − 𝑆𝑡−1𝑘𝑡 𝑘𝑡
⊤

Most importantly, Songlin Yang et al find a efficient parallel 
strategy on GPUs, which makes this model have the potential 
to become a part of modern LLM

Parallelizing Linear Transformers with the Delta Rule over Sequence Length. NeurIPS 2024.
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Before We Start

Limitation of limited state space. 

Combine Delta Rule with Transformer. 

Difficult to remember long sequences[1].

Transformers can adapt to a form of dynamic sparsity[2].

...

[1] Repeat after me: Transformers are better than state space models at copying. ICML 2024. 
[2] When Do Transformers Outperform Feedforward and Recurrent Networks? A Statistical Perspective. Arxiv2025.12



Part 1. Associative Memory and Its Capacity
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Associative Memory

• Associative memory is defined as the ability to learn and 
remember the relationship between unrelated items.

“Paris” “Eiffel Tower”

“Kobe” “Bryant”
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Associative Memory

• Like a dictionary:
• We have keys and values;
• Learning is the process of acquiring the fuzzy mapping.

Memorykey value

Training Inference

Memoryquery value

• Associative memory is defined as the ability to learn and 
remember the relationship between unrelated items.

15



Simplest Model for Associative Memory 

• Suppose we have key-value pairs (𝑘𝑖 , 𝑣𝑖) 𝑡 where the keys are 
orthogonal. We can store these relationships into an outer-
product associative memory (Kohonen 1972):

• Query with 𝑞 = 𝑘𝑖 we get perfect retrieval:

𝑜 = 𝑆𝑡𝑘𝑖 = 𝑣𝑖𝑘𝑖
𝑇𝑘𝑖 + 

𝑗≠𝑖

𝑣𝑗𝑘𝑗
𝑇𝑘𝑖 = 𝑣𝑖

• This kind of outer-product memory is also known as linear 
attention.

𝑆𝑡 = 

𝑖=1

𝑡

𝑣𝑖𝑘𝑖
𝑇

16



Measuring Retrieval Error

• What if keys are not orthonormal？

𝑜 = 𝑆𝑡𝑘𝑖 = 𝑣𝑖 𝑘𝑖
𝑇𝑘𝑖 + 

𝑗≠𝑖

𝑣𝑗𝑘𝑗
𝑇𝑘𝑖

 

≈ 𝑣𝑖

• Define inverse retrieval SNR (Signal-to-Noise Ratio):

𝑆𝑁𝑅−1  = 𝔼𝒗𝑗,𝒌𝑗

𝒓 2

𝑐2 𝒗𝑖
2

• A larger value indicates a higher noise component, resulting in 
lower retrieval accuracy.

Signal 𝒗𝑖𝑐   

Noise 𝒓
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Measuring Retrieval Error

• Considering keys and values are i.i.d. standard Gaussian vectors. 
We can quantitatively calculate the inverse SNR:

𝑆𝑁𝑅𝐿𝑖𝑛𝑒𝑎𝑟
−1 ≈

𝑁

𝑑

• To attain a target SNR, the linear model width d must grow 
linearly with the sequence length N; 

• This explains why linear attention usually has poor retrieval 
performance.
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Kernel Trick

• Introducing a kernel function 𝜅 𝑥, 𝑦 = 𝜙 𝑥 𝑇𝜙 𝑦 .  𝜙 ⋅  maps 
keys into higher-dimensional space. 

𝑆𝑡 = 

𝑖=1

𝑡

𝑣𝑖𝜙 𝑘𝑖
𝑇

𝑜 = 𝑆𝑡𝜙(𝑞) = 

𝑖=1

𝑡

𝑣𝑗𝜙 𝑘𝑖
𝑇𝜙(𝑞) = 

𝑖=1

𝑡

𝑣𝑖𝜅(𝑘𝑖 , 𝑞)

• Greater separability among the vectors leads to lower retrieval 
error.

19



Kernel Trick

• Also, considering 𝑞 = 𝑘𝑖 , and assuming keys and values are i.i.d.
standard Gaussian, we get:

𝑆𝑁𝑅𝜅
−1  = 𝑁

𝔼𝒌𝑗
𝜅2 𝑘𝑗 , 𝑘𝑖

𝜅2 𝑘𝑖 , 𝑘𝑖

How much the kernel 
suppresses irrelevant features

How much the kernel amplifies 
the matched features

20



Exp Kernel

• For 𝜅 𝑥, 𝑦 = exp
𝑥𝑇𝑦

𝜏
 and 𝜏 = 𝑑, we get standard softmax 

attention without normalization:

𝑜 = 𝑆𝑡𝜙(𝑞) = 

𝑖=1

𝑡

𝑣𝑖  exp
𝑘𝑖

𝑇𝑞

𝑑

• Inverse SNR is:

• From 𝒅 = 𝓞(𝑵) in linear attention to 𝒅 = 𝓞(𝐥𝐨𝐠𝟐 𝑵) .

𝑆𝑁𝑅exp
−1  = 𝑁 exp −

2(𝜏 − 1)

𝜏2
𝑑

21
Understanding Transformer Reasoning Capabilities via Graph Algorithms. NeurIPS 2024.



Exp Kernel

𝑆𝑁𝑅exp
−1  = 𝑁 exp −

2(𝜏 − 1)

𝜏2
𝑑

• Increase d improves retrieval (but in most cases d is enough).
• Reducing 𝜏 but keeping it above 1 improves retrieval.
• Multihead is good for softmax attention, but not good for linear.
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ReLU Kernel
• FFN is associative memory with 𝜅 𝑥, 𝑦 = ReLU 𝑥𝑇𝑦  :

• Query is hidden state 𝑥, keys and values are learnable weights.

Inverse SNR is :

𝑆𝑁𝑅ReLU
−1 ≈

𝑁

2𝑑
We suspect a kernel with lower retrieval precision encourages a 
more polysemantic key–value memory, which is suitable for FFN.

𝐹𝐹𝑁 𝑥 = 

𝑖=1

𝑚

𝑊𝑉𝑖

𝑇 ReLU(𝑊𝐾𝑖
𝑥)

23



Architecture Symmetry

• We suspect FFN can benefit from multihead too [1].

[1] Attention is all you need. Arxiv 2017. v2
24



Architecture Symmetry

• Integrating MoE into 
attention we get MoBA.

Moba: Mixture of block attention for long-context llms. Arxiv 2025
25



Architecture Symmetry
• Gating like SwiGLU is 

underexplored. FoX is a 
special case here：

𝑔𝑖 𝑥𝑖:𝑡 = ෑ

𝑗=𝑖+1

𝑡

𝛼𝑗(𝑥𝑗)

Forgetting transformer: Softmax attention with a forget gate. ICLR 2025 26



Part 2. Update the Associative Memory
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How is associative memory updated?

• Taking the linear model as an example,

• 𝑆𝑡 = σ𝑖=1
𝑡−1 𝑣𝑖𝑘𝑖

⊤

 

𝑆𝑡−1

+ 𝑣𝑡𝑘𝑡
⊤

     = 𝑆𝑡−1 − −𝑣𝑡𝑘𝑡
⊤

 
𝜕𝐿𝑡

𝜕𝑆𝑡−1

28



How is associative memory updated?

• Taking the linear model as an example,

𝐿𝑡 𝑆𝑡−1 = − < 𝑆𝑡−1𝑘𝑡 , 𝑣𝑡 >

• 𝑆𝑡 = σ𝑖=1
𝑡−1 𝑣𝑖𝑘𝑖

⊤

 

𝑆𝑡−1

+ 𝑣𝑡𝑘𝑡
⊤

     = 𝑆𝑡−1 − −𝑣𝑡𝑘𝑡
⊤

 

𝜕𝐿𝑡
𝜕𝑆𝑡−1

29



How is associative memory updated?

• Taking the linear model as an example,

𝐿𝑡 𝑆𝑡−1 = − < 𝑆𝑡−1𝑘𝑡 , 𝑣𝑡 >

The loss is unbounded.

• 𝑆𝑡 = σ𝑖=1
𝑡−1 𝑣𝑖𝑘𝑖

⊤

 

𝑆𝑡−1

+ 𝑣𝑡𝑘𝑡
⊤

     = 𝑆𝑡−1 − −𝑣𝑡𝑘𝑡
⊤

 
𝜕𝐿𝑡

𝜕𝑆𝑡−1
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How is associative memory updated?

Solution 1: regularize ||𝑆||𝐹

• 𝐿𝑡 𝑆𝑡−1 = − < 𝑆𝑡−1𝑘𝑡 , 𝑣𝑡 > +
1

2
|| 1 − 𝜆𝑡 𝑆𝑡−1||𝐹

2

31



How is associative memory updated?

Solution 1: regularize ||𝑆||𝐹

• 𝐿𝑡 𝑆𝑡−1 = − < 𝑆𝑡−1𝑘𝑡 , 𝑣𝑡 > +
1

2
|| 1 − 𝜆𝑡 𝑆𝑡−1||𝐹

2

• Update form: 𝑆𝑡 = 𝜆𝑡𝑆𝑡−1 + 𝑣𝑡𝑘𝑡
⊤

This is gated linear model.

32



How is associative memory updated?

Solution 1: regularize ||𝑆||𝐹

• 𝐿𝑡 𝑆𝑡−1 = − < 𝑆𝑡−1𝑘𝑡 , 𝑣𝑡 > +
1

2
|| 1 − 𝜆𝑡 𝑆𝑡−1||𝐹

2

• Update form: 𝑆𝑡 = 𝜆𝑡𝑆𝑡−1 + 𝑣𝑡𝑘𝑡
⊤

This is gated linear model.

• Gating implies a bias that older information is less important.

33



How is associative memory updated?

Solution 2: regularize ||𝑆𝑘|| 

• 𝐿𝑡 𝑆𝑡−1 = − < 𝑆𝑡−1𝑘𝑡 , 𝑣𝑡 > +
1

2
|| 𝑆𝑡−1𝑘𝑡|| 

2

=
1

2
||𝑆𝑡−1𝑘𝑡 − 𝑣𝑡||2 −

1

2
||𝑣𝑡||2

34



How is associative memory updated?

Solution 2: regularize ||𝑆𝑘|| 

• 𝐿𝑡 𝑆𝑡−1 = − < 𝑆𝑡−1𝑘𝑡 , 𝑣𝑡 > +
1

2
|| 𝑆𝑡−1𝑘𝑡|| 

2

=
1

2
||𝑆𝑡−1𝑘𝑡 − 𝑣𝑡||2 −

1

2
||𝑣𝑡||2

: =
1

2
||𝑆𝑡−1𝑘𝑡 − 𝑣𝑡||2

35



How is associative memory updated?

Solution 2: regularize ||𝑆𝑘|| 

• 𝐿𝑡 𝑆𝑡−1 =
1

2
||𝑆𝑡−1𝑘𝑡 − 𝑣𝑡||2

• Update form: 𝑆𝑡 = 𝑆𝑡−1 𝐼 − 𝑘𝑡𝑘𝑡
⊤ + 𝑣𝑡𝑘𝑡

⊤

This is DeltaNet（Delta rule update）.

36



How is associative memory updated?

Solution 2: regularize ||𝑆𝑘|| 

• 𝐿𝑡 𝑆𝑡−1 =
1

2
||𝑆𝑡−1𝑘𝑡 − 𝑣𝑡||2

• Update form: 𝑆𝑡 = 𝑆𝑡−1 𝐼 − 𝑘𝑡𝑘𝑡
⊤ + 𝑣𝑡𝑘𝑡

⊤

This is DeltaNet（Delta rule update）.

• How to understand the magic gate 𝐼 − 𝑘𝑡𝑘𝑡
⊤ ？

37



How is associative memory updated?

Understand delta rule

• 𝑆𝑡 = 𝑆𝑡−1 𝐼 − 𝑘𝑡𝑘𝑡
⊤ + 𝑣𝑡𝑘𝑡

⊤ = σ𝑖=1
𝑡−1 𝑣𝑖𝑘𝑖

⊤(𝐼 − 𝑘𝑡𝑘𝑡
⊤) + 𝑣𝑡𝑘𝑡

⊤

= 𝑆𝑡−1 + (𝑣𝑡 − σ𝑖=1
𝑡−1 𝑣𝑖 𝑘𝑖

⊤𝑘𝑡
 

Info overlap with 𝑣𝑡

)𝑘𝑡
⊤

• Delta rule is a smarter gate for erasing overlapping historical info.

38



How is associative memory updated?

Solution 3: normalization ( e.g., σ𝑖=1
𝑡 𝜅(𝑞, 𝑘𝑖))

• When 𝑡 is sufficiently large:

𝐿𝑡 𝑆𝑡−1 ≈
1

𝑡
(− < 𝑆𝑡−1𝑘𝑡 , 𝑣𝑡 > +

1

2
||𝑆𝑡−1||𝐹

2 )

• Besides regularizing ||𝑆||𝐹 , 
1

𝑡
also suppresses numerical 

explosion.
39



Part 3. Exploration of Next Generation Models  
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What is the essential difference?

Solution：
• 1) Decay:

• 2) Delete:

𝑆𝑡+1 = 𝑆𝑡 + 𝑣𝑡𝑘𝑡
⊤ 𝑆𝑡 → ∞

𝑆𝑡+1 = 𝑆𝑡(𝛼𝑡𝐼) + 𝑣𝑡𝑘𝑡
⊤

𝑆𝑡+1 = 𝑆𝑡(𝐼 − 𝑘𝑡𝑘𝑡
⊤) + 𝑣𝑡𝑘𝑡

⊤

Data independent:  RetNet,RWKV4 
Data dependent:      Gated linear attention,Mamba2,RWKV6

Without decay: DeltaNet
With decay: RWKV7, Gated DeltaNet
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Intuitively speaking:

𝑆𝑡+1 = 𝑆𝑡(𝛼𝑡𝐼) + 𝑣𝑡𝑘𝑡
⊤ 𝑆𝑡+1 = 𝑆𝑡(𝐼 − 𝑘𝑡𝑘𝑡

⊤) + 𝑣𝑡𝑘𝑡
⊤

Decay Delete

𝑆𝑡 = 

𝑖=1

𝑡
𝛽𝑡

𝛽𝑖
𝑣𝑖𝑘𝑖

⊤

𝛽𝑡 = ෑ

𝑖=1

𝑡

𝛼𝑖 𝑢𝑡 = 𝑣𝑡 − 

𝑖=1

𝑡−1

𝑘𝑖 ⋅ 𝑘𝑡 𝑢𝑖

𝑆𝑡 = 

𝑖=1

𝑡

𝑢𝑖𝑘𝑖
⊤

The computation of β can be treated as a prefix sum, which allows for an efficient implementation. 
The computation of u seems to be inherently sequential, requiring an O(t) loop? 
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Mathematically speaking:

The computation of β and u have different parallel complexity.

1. What is the length of the critical path? 
O(logk n) → {TCk, ACk, NCk}

2. How many fan-in one node can receive?
2 → NC
unlimit → {AC, TC}

3.Can we use a Threshold Gate out of OR/AND/NOT? 
Yes → TC
No → {NC, AC}

Three basic questions for determining Parallel 
Complexity:
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Where is the popular model?

Memory size

𝐿𝑆𝑇𝑀, 𝑅𝑁𝑁

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟

𝐿𝑂𝐺𝐶𝐹𝐿

𝑁𝐶1

𝑃

…

𝑁𝐶2

𝑁𝐿

𝑆𝐿

𝑇𝐶0

𝐴𝐶0

𝑁𝐶0

𝑀𝑎𝑡𝑟𝑖𝑥 𝐼𝑛𝑣𝑒𝑟𝑠𝑒

𝑆5, 𝑃𝑦𝑡ℎ𝑜𝑛, 𝐶ℎ𝑒𝑠𝑠

𝑃𝑎𝑟𝑖𝑡𝑦 𝐶ℎ𝑒𝑐𝑘

𝑆𝑇𝐶𝑂𝑁

𝑈𝑆𝑇𝐶𝑂𝑁

𝐴𝑐𝑦𝑐𝑙𝑖𝑐 𝐵𝐶𝑄

𝑈𝑛𝑎𝑟𝑦 𝐿𝑎𝑛𝑔𝑢𝑎𝑔𝑒

𝐿𝑖𝑛𝑒𝑎𝑟 𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝑚𝑖𝑛𝑔

…

𝐴𝑑𝑑 𝐵𝑜𝑜𝑙 𝑀𝑎𝑡𝑟𝑖𝑥

𝑀𝑎𝑚𝑏𝑎2, 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑟, 𝑅𝑒t𝑁𝑒𝑡,
𝐿𝑖𝑛𝑒𝑎𝑟 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛, 𝐺𝐿𝐴, 𝑅𝑊𝐾𝑉6 …

𝐷𝑒𝑙𝑡𝑎𝑁𝑒𝑡, 𝑅𝑊𝐾𝑉7, 𝐺𝑎𝑡𝑒𝑑 𝐷𝑒𝑙𝑡𝑎𝑁𝑒𝑡. .

𝐶𝑁𝑁 𝑤𝑖𝑡ℎ 𝐹𝑖𝑥𝑒𝑑 𝑠𝑖𝑧𝑒 𝑘𝑒𝑟𝑛𝑒𝑙

𝑂(1) 𝑂(log 𝑇) 𝑂(𝑇)

Expressivity

The higher the parallelism, the lower the expressiveness. We list representative tasks of common complexity next to them.

𝐿𝑜𝑔𝑙𝑖𝑛𝑒𝑎𝑟 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛
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Important tasks beyond 𝑇𝐶0

• 𝑁𝐶1: Python, Chess, Entities…

• Beyond 𝑁𝐶1:Graph 
connectivity …

The illusion of state in state-space models. ICML 2024.
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When Transformer learn task beyond 𝑇𝐶0

• Difficult to learn: context 
length 32 need 16 layers

• Difficult to generalize: 
accuracy 0 out of 
distribution

𝑆5: Track the swap of 5 elements, which is beyond 𝑇𝐶0

Implicit Language Models are RNNs: Balancing Parallelization and Expressivity. Arxiv 2025.
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DeltaFormer: Make Transformer Beyond 𝑇𝐶0

• Rethink Transformer from delta rule:

𝑆𝑡 = 𝑆𝑡−1(𝐼 − 𝑘𝑡𝑘𝑡
⊤) + 𝑣𝑡𝑘𝑡

⊤Delta rule:

+Kernel Trick:

𝑆𝑡 = 𝑆𝑡−1(𝐼 − 𝜙 𝑘𝑡 𝜙(𝑘𝑡
⊤)) + 𝑣𝑡𝜙(𝑘𝑡

⊤)

𝜅(𝑘𝑖 , 𝑘𝑗) = 𝜙 𝑘𝑖
𝑇𝜙(𝑘𝑗)
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Derivation of DeltaFormer

𝑆𝑡 = 𝑆𝑡−1(𝐼 − 𝜙 𝑘𝑡 𝜙(𝑘𝑡
⊤)) + 𝑣𝑡𝜙(𝑘𝑡

⊤)

𝜅(𝑘𝑖 , 𝑘𝑗) = 𝜙 𝑘𝑖
𝑇𝜙(𝑘𝑗)

𝑢𝑡 = 𝑣𝑡 − 

𝑖=1

𝑡−1

𝜅 𝑘𝑡 , 𝑘𝑖 𝑢𝑖

𝑜𝑡 = 

𝑖=1

𝑡

𝜅 𝑞𝑡 , 𝑘𝑖 𝑢𝑖

By method of undetermined coefficients

𝑢𝑡 = 𝛼𝑡𝑣𝑡 − 𝛽𝑡 

𝑖=1

𝑡−1

𝜅1 𝑤𝑡 , 𝑘𝑖 𝑢𝑖

𝑜𝑡 = 

𝑖=1

𝑡

𝜅2 𝑞𝑡 , 𝑘𝑖 𝑢𝑖

General 
form
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Efficient chunk-wise implementation

• Recurrent:

• Parallelize :

• Chunk-wise:

𝑢𝑡 = 𝑣𝑡 − 

𝑖=1

𝑡−1

𝜅 𝑘𝑡 , 𝑘𝑖 𝑢𝑖

𝑈 = 𝑉 − 𝐴𝑈 𝑈 = 𝐼 + 𝐴 −1𝑉

𝑈𝐶 = 𝑉𝑐 − 𝐴𝑐 𝑈𝑐 − 𝐴𝑐,𝑝𝑈𝑝

𝑈𝐶 = 𝐼 + 𝐴𝑐
−1(𝑉𝑐 − 𝐴𝑐,𝑝𝑈𝑝)
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Efficient chunk-wise implementation

Current  Implementation

• Recurrent (Serial): O(T) loop

• Parallelize(Torch trsv): 
Too much I/0.

• Chunk-wise(dfpa): O(T/C) loop 
with 𝑂(𝑇2𝐷 + 𝑇𝐶𝐷 + 𝑇𝐶2) flops
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Make Transformer beyond 𝑇𝐶0

• More expressive:

Can track the exchange of  𝑛
elements with 𝑑 = 𝑂(log 𝑛 ).
In the Lemma 2 of rwkv7, they tracking 5 elements used 5 dimensions

• Native compression: 

If we read out and rewrite KU 
cache every O(n) step, the 
actually KU cache is 𝑂 𝑛𝑙𝑜𝑔𝑛 .
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Learn from data -- Tracking

• DeltaFormer with any kernel  surpass Transformer in tracking.
• Accuracy:  8 layers Transformer < 0.50,   

1 layers DeltaFormer can reach 1.00.
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Learn from data -- Tracking

• Nonlinear kernel has more capacity than linear.
• Track n elements with dim d < n:

linear → drop much ,   nonlinear > 0.95. 
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Learn from data -- Tracking

• GQA like method enhance nonlinear kernel with the same KU cache
• Track 5 elements with a kv head with dim 3, but we have more “query” 𝑤.
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Learn from data -- Tracking

• Curriculum learning: when accuracy reach 0.99,  context length × 2
• With curriculum learning:  RoPE can NOT reach 1.00,  NoPE can 

reach 1.00.   
• Without curriculum learning:  RoPE can learn, NoPE can NOT learn.   
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Learn from data – Reachability of DAG

• The reachability of directed acyclic graphs:
Transformer get 0.8,  DeltaFormer can reach 1.00.
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Learn from data – Dyck grammar

• Example: “((()())(()))”

Context length = 64, next token prediction, compress Dyck grammar Better compression ratio

𝑢𝑡 = 𝑣𝑡 + 𝑢𝑡−1 Can record whether there are more left parentheses than right parentheses at present. 
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Learn from data – From Dyck to real code

• 14B total parameters model,  500B training token

Total loss: DeltaFormer  lead baseline by 0.005
Code loss: DeltaFormer  lead baseline by 0.03

This implies that the model‘s ability to compress more complex knowledge exceeds that of the Transformer.
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Learn from data – Induction heads
• Better learn induction heads: “… AB… A” predict “B” 

The calculation of 𝑢 can to some extent replace the function of copy heads, 
thereby promoting the formation of induction heads
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DeltaFormer – Future work

• Optimization.     -- Stability training and scaling .. 

• Fine grained design. --GQA / Different kernel / Head 

Nums/ Head Dims / PE / Sparse…

• Implementation.     -- Fast..

• Practical.     -- Expressivity/  KU cache/ Flops   Trade off..

• More expressive but also practical model. 
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Expressivity

Memory size

𝐿𝑆𝑇𝑀, 𝑅𝑁𝑁

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟

𝐿𝑂𝐺𝐶𝐹𝐿

𝑁𝐶1

𝑃

…

𝑁𝐶2

𝑁𝐿

𝑆𝐿

𝑇𝐶0

𝐴𝐶0

𝑁𝐶0

𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟

𝐷𝑒𝑙𝑡𝑎𝑁𝑒𝑡

𝐶𝑁𝑁

𝑂(1) 𝑂(𝑇)

Short term trade off

Long term

𝑂(log 𝑇)

𝐿𝑜𝑔𝐿𝑖𝑛𝑒𝑎𝑟 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛

𝐷𝑒𝑙𝑡𝑎𝑓𝑜𝑟𝑚𝑒𝑟(𝑂𝑢𝑟𝑠)
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Thanks for listening!
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Q & A
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