hil ByteDance | Seed

Understanding Transformer from the Perspective of
Associative Memory

Shu Zhong*', Mingyu Xu*, Tenglong Ao*, Guang Shi'
ByteDance Seed

*Equal contribution, TCorresponding authors

Overview

Part 1. Associative Memory and Its Capacity

Part 2. Update the Associative Memory

Part 3. Exploration of Next Generation Models

Before We Start

There is a contradiction between expressiveness and parallelism.

Q1: If you can add any two numbers in parallel each time, how much
time do we need to calculate the sum of n elements ?
The answer is. 0(login).

x1+x2+-~+xn

Q2:If you can add any two numbers in parallel each time, how much
time do we need to calculate the add of two matrix with size n X n? A+ B
The answer is 0(1) = 0(log° n).

Time: Q1 > Q2
Operation in total: Q1 < Q2

Before We Start

There is a contradiction between expressiveness and parallelism.

Q1: If you can add any two numbers in parallel each time, how much
time do we need to calculate the sum of n elements ?
The answer is. 0(login).

: : @ umbers in parallel each time@
time do we need to calcu te the add of two matrix with size n X n? A+ B

x1+x2+-~+xn

| NC!
And, Or,Not gate g 0(10g"ﬁ)/ AC!

And, Or, Not, threshold gates—_,ynlimited _— \> TC!

Before We Start Problem can solve Parallelism

without COT
There is a contradiction between L .
inear Programming P
expressiveness and parallelism.
Where is the popular model, such as Transformer? Matrix Inverse NC2
Acyclic BCQ LOGCFL
STCON NL
USTCON SL
Ss, Python, Chess NC1
Parity Check TCO
Unary Language AC®
Add Bool Matrix NCO

The parallelism tradeoff: Limitations of log-precision transformers. TACL 2023.
Chain of Thought Empowers Transformers to Solve Inherently Serial Problems. Arxiv 2024.

Before We Start

There is a contradiction between
expressiveness and parallelism.

Where is the popular model, such as Transformer?

TCY or ACP (log or constant precision)

Problem can solve
without COT

Linear Programming

Matrix Inverse
Acyclic BCQ
STCON
USTCON
Sc, Python, Chess
Parity Check

Unary Language
Add Bool Matrix

The parallelism tradeoff: Limitations of log-precision transformers. TACL 2023.
Chain of Thought Empowers Transformers to Solve Inherently Serial Problems. Arxiv 2024.

Parallelism

NC?
LOGCFL
NL
SL
NC?
TC®
ACY
NC°

Before We Start

One the most important reason that Transformer beat RNN:

GPUs + High Parallelism

Before We Start

One the most important reason that Transformer beat RNN:

GPUs + High Parallelism

However, we know that there is a contradiction between
expressiveness and parallelism.

[s there a model with more expressiveness than
transformer but also can be parallelized in GPUs ?

Before We Start

DeltaNet: A model which beyond TC°

1980s and 1990s 2020s
variable weight wp, . The output at time t is
n
p(t) = 151 wp, (thwy(t). From the perspective of fast weight programming (Irie et al., 2022a) and test-time training (Sunetal.,
- .) 2024a) and regression (Wang et al., 2025), the hidden state S can be interpreted as a (fast) weight
The weights change over time according to the following equation: for matrix, with the delta rule optimizing the online regression objective £(S;) = 3(|S:k: — vy||? via
i=1,...40, test-time stochastic gradient descent (SGD):
wp; (t+1)=wp; (t)+cp[z(t)-p(t-1)1x4(t-1) St+1=S: — BiVL(St) = St — Be(Stk: — vi)k{ =S¢ (I Bikik]) + Brvik!
— T . T
WP1 =WP+cp (Zy —WP_1Wi_1)xp—q St = St—1+ B (e — Se_1ke) ks

https://web.cs.umass.edu/publication/docs/1980/UM-CS-1980-018.pdf
https: //citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=2f0becffd2f44b198d28074d01722e4c7905dae2

https://www.cs.toronto.edu/~fritz/absps/fastweights.pdf
Parallelizing Linear Transformers with the Delta Rule over Sequence Length. NeurlPS 2024. ’

https://web.cs.umass.edu/publication/docs/1980/UM-CS-1980-018.pdf
https://web.cs.umass.edu/publication/docs/1980/UM-CS-1980-018.pdf
https://web.cs.umass.edu/publication/docs/1980/UM-CS-1980-018.pdf
https://web.cs.umass.edu/publication/docs/1980/UM-CS-1980-018.pdf
https://web.cs.umass.edu/publication/docs/1980/UM-CS-1980-018.pdf
https://web.cs.umass.edu/publication/docs/1980/UM-CS-1980-018.pdf
https://web.cs.umass.edu/publication/docs/1980/UM-CS-1980-018.pdf

Before We Start

DeltaNet: A model which beyond TC°

1980s and 1990s 2020s

WPy = WP, + cp (Z, — WP qwy_q)x)1 S¢ = Se—1+ B Wy — Se—1kpk{

Expect the internal output WP,_;w;_,/S;_1k; to be consistent
with the feedback Z; /v;, and adjust the internal state WP/S
based on the inconsistency (Z; —-WP,_iw;_1)/ (vy — S;_1k;)
with a learning rate cp/[;.

Regarding this update rule, it can have expressive power beyond TC° . Readers can refer to RWKV-7 “Goose” with
Expressive Dynamic State Evolution. Arxiv 2025. 10

Before We Start

DeltaNet: A model beyond TC"

1980s and 1990s 2020s

WPy = WP, + cp (Z, — WP qwy_q)x)1 S¢ = Se—1+ B Wy — Se—1kpk{

Most importantly, Songlin Yang et al find a efficient parallel
strategy on GPUs, which makes this model have the potential
to become a part of modern LLM

Parallelizing Linear Transformers with the Delta Rule over Sequence Length. NeurlPS 2024.

11

Before We Start

Limitation of limited state space.

Difficult to remember long sequences[1].

Transformers can adapt to a form of dynamic sparsity[2].

- (Combine Delta Rule with Transformer.

[1] Repeat after me: Transformers are better than state space models at copying. ICML 2024.
[2] When Do Transformers Outperform Feedforward and Recurrent Networks? A Statistical Perspective. Arxiv2025.

Part 1. Associative Memory and Its Capacity

Associative Memory

* Associative memory is defined as the ability to learn and
remember the relationship between unrelated items.

“Paris” - “Eiffel Tower”

“Kobe” > “Bryant”

14

Associative Memory

Associative memory is defined as the ability to learn and
remember the relationship between unrelated items.

Like a dictionary:
* We have keys and values;
* Learning is the process of acquiring the fuzzy mapping.

Training Inference

key 4’[Memory J—'V(,llue queryA[Memory J—'value

15

Simplest Model for Associative Memory

* Suppose we have key-value pairs {(k;, v;)}; where the keys are
orthogonal. We can store these relationships into an outer-
product associative memory (Kohonen 1972):

t
St — Z Uik’l-r
i=1

* Query with g = k; we get perfect retrieval:

0 = S,;k; = vkTk; + z vk k; = v,
J#F1
* This kind of outer-product memory is also known as linear
attention.

16

Measuring Retrieval Error

What if keys are not orthonormal?

0O = Stki = Ul(k;rkl) + 2 Ujk]Tki ~ Vi

JES!

e

Signal v;c

Noiser

Define inverse retrieval SNR (Signal-to-Noise Ratio):

]|]

T e w2

SNR™Y = E, i

A larger value indicates a higher noise component, resulting in
lower retrieval accuracy.

17

Measuring Retrieval Error

Considering keys and values are i.i.d. standard Gaussian vectors.
We can quantitatively calculate the inverse SNR:

SNR[Ti}lear ~
To attain a target SNR, the linear model width d must grow
linearly with the sequence length N;

This explains why linear attention usually has poor retrieval
performance.

18

Kernel Trick

e Introducing a kernel function k(x,y) = ¢(x)T d(y). ¢(-) maps

keys into higher-dimensional space.
t

S5; = 2 Ui¢(ki)T
i=1
t t

0 =Seb(@) =) v (k" $(@) =) virc(ki,q)

1=1 =1

* (Greater separability among the vectors leads to lower retrieval
error.

19

Kernel Trick

* Also, considering g = k;, and assuming keys and values are i.i.d.
standard Gaussian, we get:

How much the kernel
[Ekj [KZ (kj, ki)] — suppresses irrelevant features

Kz(ki, kl)

SNRZ! = N

. How much the kernel amplifies
the matched features

20

Exp Kernel

xTy

* Fork(x,y) = exp (T) and T = vV d, we get standard softmax

attention without normalization:
t

LT
0=S5:¢(q) = Z V; eXp (%)

1=1
e Inverse SNR is:

2(t — 1
SNRe_Xlp = N exp (— ()d>

T2

* Fromd = O(N) in linear attention to d = O(log? N).

Understanding Transformer Reasoning Capabilities via Graph Algorithms. NeurlPS 2024.

21

Exp Kernel
2(t—1) P

TZ

SNRe&p, = Nexp | —

* Increase d improves retrieval (but in most cases d is enough).
* Reducing 7 but keeping it above 1 improves retrieval.
 Multihead is good for softmax attention, but not good for linear.

4.50 -
—e— 12 head Softmax Attention

1 head Softmax Attention
«— 12 head Linear Attention
4.251 1 head Linear Attention

4.00 -

3.75 -

Validation Loss

3.50 -

1600 2400 3200 4000 4800

Step

22

ReLLU Kernel

« FFN is associative memory with «(x,y) = ReLU(xTy) :
m
FFN(x) =) Wy ReLU(Wg x)

1=1

* (Query is hidden state x, keys and values are learnable weights.

Inverse SNR is :
SNRRoLy ® =—
ReLU Zd
We suspect a kernel with lower retrieval precision encourages a
more polysemantic key-value memory, which is suitable for FFN.

23

Architecture Symmetry

Component Attention FFN (95,135,253 Ajnn] = @
Kernel Exp ReLU / SiLU [Fei 15 Fei 2 - ';ki’”h-_ —
Normalization Yes None Vi1, 0625 - -5 Vi, | = Vs,
Multihead Yes None >
Sparsity None MoE Z v;,. K(qy,, k
Gating None SwiGLU Gating

Oy = WO[Ot,1§ Ot 253 Ot,nh]°

 We suspect FFN can benefit from multihead too [1].

[1] Attention is all you need. Arxiv 2017. v2
24

Architecture Symmetry

Component Attention FFN

Kernel Exp ReLU / SiLU .
Normalization Yes None

Multihead Yes None

Sparsity —— None MoE

Gating None SwiGLU Gating

Integrating Mok into
attention we get MoBA.

e=1

FFNMoE(T) =) _ ge()

Y Wy ReLU(W,)

i1€Expert(e)

E
Ot MoE — Z ge(qta {ki}ieExpert(e)) Z U; H’(Qta k%)

1€Expert(e)

Moba: Mixture of block attention for long-context llms. Arxiv 2025

25

Architecture Symmetry

* Gating like SwiGLU is

Component Attention FFN q | 4 FoX i
unaerexpliored. roaAlS a
Kernel Exp ReLU / SiLU _ b _
Normalization Yes None SpeCIal case here :
Multihead Yes None t
Sparsity None MoE (x: — a:(x:
Gating None SwiGLU Gating gl(l't) I I J (J)
i j=i+1

FFNswicLu(x) = Y Wy, (Wg,) Swish(Wi, =z),

swicLU () ; Vi (i?))J() :\)

V5 gi(x K(-," i dt

t

Ot,gated — Z vU; gi(m?}:t) m(qta k?,)a

=1

Forgetting transformer: Softmax attention with a forget gate. ICLR 2025 26

Part 2. Update the Associative Memory

How is associative memory updated?

* Taking the linear model as an example,

_— \t—1 T T
¢ St — ~ i:1 vlli + vtkt

St-1 .
= 5¢-1 — E—Vtktl

Ly
dSt—1

28

How is associative memory updated?

* Taking the linear model as an example,

_— \t—1 T T
¢ St — ~ i:1 vlli + vtkt

St—1

L:(S; 1) =—<S8;,_.ksyv >
:5t—1—£—77tkth (S¢—1) t—1K¢, UVt

L¢
dSt—1

29

How is associative memory updated?

* Taking the linear model as an example,

— \t—1 T T
¢ St -_ 2,::1 vlli + vtkt

St-1 .
= 5¢-1 — E—Vtktl

Ly
dSt—1

Li(Si—1) = = < Sp_q1ks,ve >

The loss is unbounded.

30

How is associative memory updated?

Solution 1: regularize ||S||z

1
o Li(Siq) = —<Si_1ky, v > T3 ||\/1 — At Se—1ll%

31

How is associative memory updated?

Solution 1: regularize ||S||z

1
o Li(Siq) = —<Si_1ky, v > T3 ||\/1 — At Se—1ll%

e Update form: S, = 1,.S,_; + v.k/

This is gated linear model.

32

How is associative memory updated?

Solution 1: regularize ||S||z

1
o Li(Siq) = —<Si_1ky, v > T3 ||\/1 — At Se—1ll%

e Update form: S, = 1,.S,_; + v.k/

This is gated linear model.

* (Gating implies a bias that older information is less important.

33

How is associative memory updated?

Solution 2: regularize ||Sk||
1
o Li(Siq) = —<Si_1ky, v > T3 || Se_1kel]?

1 1
— E”St—lkt — Vt”z _E”VtHz

34

How is associative memory updated?

Solution 2: regularize ||Sk||
1
o Li(Siq) = —<Si_1ky, v > T3 || Se_1kel]?

1 1
= 2|ISe_1ke = vell2 —= o2

1
=5 |[Se—1ke — Ut”z

35

How is associative memory updated?

Solution 2: regularize ||Sk||

1
o Li(Si—q1) = EHSt—lkt — Vt”z

e Update form:S; = S;_1(I — k.k') + v k]

This is DeltaNet (Delta rule update) .

36

How is associative memory updated?

Solution 2: regularize ||Sk||

1
o Li(Si—q1) = EHSt—lkt — Vt”z

e Update form:S; = S;_1(I — k.k') + v k]

This is DeltaNet (Delta rule update) .

How to understand the magic gate (I — k.k/)?

37

How is associative memory updated?

Understand delta rule

* S =S8_.U- ktkt-fr) T Vtk;r — f;% vikiT(I — ktkt-tr) + Vtk;r

=S¢-1 + (Ve — gf;% Vi(kiTkt))L

Info overlap with v,

Delta rule is a smarter gate for erasing overlapping historical info.

38

How is associative memory updated?

Solution 3: normalization (e.g, },;—1 k(q, k;))

 When t is sufficiently large:

1
Le(Se—1) ~_(< 5;- 1kt»vt>+ 11Se-1115)

. .. 1 .
* Besides regularizing ||S||z, , also suppresses numerical

explosion.

39

Part 3. Exploration of Next Generation Models

What is the essential difference?

St1 =S¢ +vik! S5t o ®
Solution :
e 1) Decay: St+1 = Se(acl) + veki

Data independent: RetNet,RWKV4
Data dependent: Gated linear attention,Mamba2,RWKV6

* 2) Delete: Sev1 = 5:U — ktk;r) + VtktT

Without decay: DeltaNet
With decay: RWKV7, Gated DeltaNet

41

[ntuitively speaking:

The computation of 3 can be treated as a prefix sum, which allows for an efficient implementation.
The computation of u seems to be inherently sequential, requiring an O(t) loop?

Decay
Ser1 = Se(ael) + vk
t
t = 1_[24
i=1
t
S = &v-kT

Delete
Stv1 = Se(I — kekd) + vik!

t—1
U =V — Z(ki k)
=1

t

=1

42

Mathematically speaking:

The computation of f and u have different parallel complexity.

Three basic questions for determining Parallel
Complexity:

1. What is the length of the critical path?
O(logkn) — {TCK, ACK,NCK}

2. How many fan-in one node can receive?
2 —> NC
unlimit - {AC, TC}

3.Can we use a Threshold Gate out of OR/AND/NOT?
Yes - TC
No — {NC, AC}

43

Where is the popular model?

Expressivity

Linear Programming

Matrix Inverse
Acyclic BCQ
STCON
USTCON
Ss, Python, Chess
Parity Check

Unary Language
Add Bool Matrix

P

NC?
LOGCFL

NL
SL
NC?
TC®
AC®
NC"

A

O

O
w

0(1)

A sty
Q) DeltaNet, RWKV7, Gated DeltaNet..

@ Transformer

' Mamba?2, Per former, RetNet,
Linear attention, GLA, RWKV6 ...

* CNN with Fixed size kernel

. Loglinear attention

O(log T) 0(T) Memory size

The higher the parallelism, the lower the expressiveness. We list representative tasks of common complexity next to H\em.

Important tasks beyond T'C°

e NC!: Python, Chess, Entities...

e Beyond NC!:Graph
connectivity ...

The illusion of state in state-space models. ICML 2024.

Transformers

45

When Transformer learn task beyond T'C°

Sc: Track the swap of 5 elements, which is beyond T C°

° leflCU.lt to learn: context betar 55 (in distribution) —— 55 (out of distribution)
i 1T Y
length 32 need 16 layers 1003 Testacuray \
* Difficult to generalize: i/ Enipk \\
accuracy 0 out of e . ol b

distribution

Implicit Language Models are RNNs: Balancing Parallelization and Expressivity. Arxiv 2025.

46

DeltaFormer: Make Transformer Beyond TC°

e Rethink Transformer from delta rule:

Delta rule: S = Se_1 (I — kekd) + vk

+Kernel Trick: k(ki, k;) = (k)" (k)

S¢e =St — ¢(kt)¢(k;r)) + Vtﬁb(k;r)

47

Derivation of DeltaFormer

Kk, ki) = (k)" p(k))
S¢ =51 — Qb(kt)(lb(k;r)) + vtqb(k;r)

ﬂ By method of undetermined coefficients

t—1 t—1
U = VUV — 2 ic(ke, kiu; General Uy = A Ve — Py 2 i1 (we, ki) u;
=il form =il
t —> t
0y = Z k(qe ki)u; 0y = Z i, (qe, ki)u;

=1 =1

48

Efficient chunk-wise implementation

Recurrent:

Parallelize :

Chunk-wise:

—

t—1

U = Ve — Z (ke k),

=1

U=V —AU T—> U=U+A)"1v

Uc =V, —A U, — AgpU,

Uc = +Ac)_1(Vc _Ac,pUp)

49

Efficient chunk-wise implementation

Current Implementation
 Recurrent (Serial): O(T) loop

* Parallelize(Torch trsv):

Too much 1/0.

* Chunk-wise(dfpa): O(T/C) loop
with O(T“D + TCD + TC?) flops

Performance
Expected performance results on HE00:

- [B,H,T,D]=2 32 8192, 128

Forwar d:

serial time 279.988 ms

Tarch trsv time 182.156 ms

dfpa time 12.705 ms]
Backward:

Torch trsv backward time 275,659 ms
[dfpa backward time 25.713 ms

Reference time consumption in training

Typical normal attention time 46.839 ms
MLP htodh GeMM time 2.918 ms
Flashattention forward time 3.406 ms
Flashattention backward time 9.348 ms

o0

Make Transformer beyond TC°

* More expressive:

Can track the exchange of n
elements with d = O(logn).

In the Lemma 2 of rwkv7, they tracking 5 elements used 5 dimensions

* Native compression:

[f we read out and rewrite KU
cache every O(n) step, the
actually KU cache is O(nlogn) .

Theorem 1 (State Exchange)

Assumption 1: There exist n state points on a d-dimensional unit sphere, and the absolute value of the
inner product of any two distinct state points is less than or equal to €(d,n), which means:

1
321,25, 0,20 €RY st willa = 1(V0), max|elz;| < e(dn) < 5.
v

Assumption 2: There is a function f satisfies:

Ve € {-1,0,1,2}, V& € U(x,4e(d,n)) : f(&) = .

Consider initializing n key-value pairs as {(k1,v1),...,(kn,vn)}. The keys {ki,...,kn} lie on a
d-dimensional unit sphere and satisfies Assumption 1, which means:

Vi, j€{l,...,n},i#5: |kill2=1, |k k;|<e(n,d).

Define an attention mechanism as follows:
t—1 t
w=ve—» f(kik)ui, 0= fla] ki)ui,
i=1 i=1

where f(-) satisfies Assumption 2 and it is noted that Vi € {1,...,n}, since f(k; k;) = 0, we have
U; = Y;.

At the current step t, t > n, the value corresponding to k; is denoted by v;, i € {1,...,n}. Note that,
after t — 1 — n exchanges, ; is not necessarily equal to the initially assigned v;. V1 <ty <t; <m, to
exchange the stored values vy, and vy, corresponding to k¢, and k,, it suffices to construct:

ki =k — ki, ve=0

When retrieving the values:
o Query q; = ky,, then oy = y,;
o Query q; = ki,, then oy = vy, ;
o Query gy = ke, 1 < t3 <n, t3 # t1,t2, then 0p = y,.
This implies the exchange of values corresponding to ki, and ki, is completed.

ol

Learn from data -- Tracking

* DeltaFormer with any kernel surpass Transformer in tracking.
e Accuracy: 8 layers Transformer < 0.50,
1 layers DeltaFormer can reach 1.00.

|

194

n“

as |

i ‘

oaf

02
w‘
¥

(a) Transformer. (b) DeltaFormer. (ki(z,y) = (c) DeltaFormer. (ki(z,y) =2 '¥)
l="y])

as{
i‘u‘
oo
3

(d) DeltaFormer. (ki(z,y) = (e) DeltaFormer. (xi(z,y) = (f) DeltaFormer. (ki(z,y) =
max(z "y, 0)) exp(z'y)) softmaz(z " y))

52

Learn from data -- Tracking

 Nonlinear kernel has more capacity than linear.
* Track n elements with dim d < n:
linear = drop much, nonlinear > 0.95.

| ‘
i ‘ b o

(@) d =128, n = 128. (b) d =128, n = 256. (¢) d =128, n =512

Figure 5 Comparison of DeltaFormer with x(z,y) = 'y and xk(z,y) = [z y].

o3

Learn from data -- Tracking

 GQA like method enhance nonlinear kernel with the same KU cache
. Track 5 elements with a kv head with dim 3, but we have more “query” w.

t—-1 G

t—1
Ut = OtV — ﬁt Zf‘&l(ki, 'wt)uz-, ut — at'vt = /Bt E E a,jK;]_(kq:, wg)uz,

t=l i=1 j=1

Accuracy vs Training Steps
— ims & 5 - F Y —— 1layer 12 Dim (GQA KV Dims=3). Delta Kernel linear+linear
4 L ki f 1 Layer 12 Dim (GQA KV Dims=3). Delta Kemnel exp+softmax
— {
‘ux‘%‘-’“’ |
1 e
'k
0,
> > >
g g g /
2 H 5 §
] ¥ ¥ [g‘
o o Y
y
’
T SRR S S LA i K e R {
J_ —_ +line: !
3 1 Layer 9 Dim A ims= el frm:
00 00
500 3000 3500 4000 o 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
TrainingStep . Training Step

(a) Query number = 1. (b) Query number = 3. (c) Query number = 4.

Figure 8 Comparison of DeltaFormer with different k1 and k2 under different query heads numbers.

o4

Learn from data -- Tracking

* Curriculum learning: when accuracy reach 0.99, contextlength X 2
* With curriculum learning: RoPE can NOT reach 1.00, NoPE can

reach 1.00.
* Without curriculum learning: RoPE can learn, NoPE can NOT learn.

i el (T
| |

g - 2 |

' — 3210256 — 2

(a) DeltaFormer with RoPE. (b) DeltaFormer with NoPE.

Figure 6 Comparison of DeltaFormer using different learning strategy and position embedding. Each use k1(z,y) =
|z y|. "32 to 256" means that the initial training length is 32, which means the number of swaps is 32. When the
accuracy reaches 0.99, the training length will be doubled until it reaches 256. Each color gradient in the image
represents a doubling of the training length. And "256" means that the model is trained on a training length of 256
from the beginning. The y-axis reflects the accuracy at the current training length.

SB)

Learn from data - Reachability of DAG

* The reachability of directed acyclic graphs:
Transformer get 0.8, DeltaFormer can reach 1.00.

(a) Transformer. (b) DeltaFormer.

Figure 7 Comparison of Transformer and DeltaFormer using different similarity functions k1 (-) for performing swapping
tasks. For k2(-), we use the softmax function to maintain consistency with Transformer. Pay attention to the scale of
the y-axis.

56

Learn from data - Dyck grammar

* Example: “(()0)(0))

s Training Steps Val Loss vs Training Steps

4000
Training Step

Context length = 64, next token prediction, compress Dyck grammar # Better compression ratio

Uy = V¢ + Us—1 Can record whether there are more left parentheses than right parentheses at present.
57

Learn from data - From Dyck to real code

* 14B total parameters model, 500B training token

Code Loss

Total loss: DeltaFormer lead baseline by 0.005
Code loss: DeltaFormer lead baseline by 0.03

This implies that the model's ability to compress more complex knowledge exceeds that of the Transformer.

o8

LLearn from data - Induction heads

* Better learn induction heads: "... AB... A” predict "B”

transformer deltaformer

The calculation of u can to some extent replace the function of copy heads,
thereby promoting the formation of induction heads

o9

DeltaFormer - Future work

 Optimization. -- Stability training and scaling ..

 Fine grained design. --GQA / Different kernel / Head
Nums/ Head Dims / PE / Sparse...

 Implementation. -- Fast.

 Practical. -- Expressivity/ KU cache/ Flops Trade off.

* More expressive but also practical model.

60

Expressivity

NC?
LOGCFL
NL

SL
NC?
TC°
ACO
NCO

0(1)

O(logT)

Deltaformer(Ours)

0(T)

Memory size

61

Thanks for listening!

Q&A

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

