
1

Part 1. Associative Memory and Its Capacity

Part 2. Update the Associative Memory

Part 3. Exploration of Next Generation Models

Overview

2

Before We Start

There is a contradiction between expressiveness and parallelism.

𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛

Q1: If you can add any two numbers in parallel each time, how much
time do we need to calculate the sum of 𝑛 elements ?
The answer is. O(log1𝑛).

Q2:If you can add any two numbers in parallel each time, how much
time do we need to calculate the add of two matrix with size 𝑛 × 𝑛?
The answer is 𝑂 1 = 𝑂(log0 𝑛).

𝐴 + 𝐵

𝑇𝑖𝑚𝑒: 𝑄1 > 𝑄2

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡𝑜𝑡𝑎𝑙: 𝑄1 < 𝑄2

3

Before We Start

There is a contradiction between expressiveness and parallelism.

𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛

Q1: If you can add any two numbers in parallel each time, how much
time do we need to calculate the sum of 𝑛 elements ?
The answer is. O(log1𝑛).

Q2:If you can add any two numbers in parallel each time, how much
time do we need to calculate the add of two matrix with size 𝑛 × 𝑛?
The answer is 𝑂 1 = 𝑂(log0 𝑛).

𝐴 + 𝐵

𝑂(log𝑖 𝑛).2
𝑢𝑛𝑙𝑖𝑚𝑖𝑡𝑒𝑑

𝐴𝑛𝑑, 𝑂𝑟, 𝑁𝑜𝑡 𝑔𝑎𝑡𝑒

𝐴𝑛𝑑, 𝑂𝑟, 𝑁𝑜𝑡, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑔𝑎𝑡𝑒𝑠

𝑁𝐶𝑖

𝐴𝐶𝑖

𝑇𝐶𝑖

4

Before We Start

There is a contradiction between
expressiveness and parallelism.

Problem can solve

without COT

𝐿𝑂𝐺𝐶𝐹𝐿

𝑁𝐶1

𝑃

…

𝑁𝐶2

𝑁𝐿

𝑆𝐿

𝑇𝐶0

𝐴𝐶0

𝑁𝐶0

𝑀𝑎𝑡𝑟𝑖𝑥 𝐼𝑛𝑣𝑒𝑟𝑠𝑒

𝑆5, 𝑃𝑦𝑡ℎ𝑜𝑛, 𝐶ℎ𝑒𝑠𝑠

𝑃𝑎𝑟𝑖𝑡𝑦 𝐶ℎ𝑒𝑐𝑘

𝑆𝑇𝐶𝑂𝑁

𝑈𝑆𝑇𝐶𝑂𝑁

𝐴𝑐𝑦𝑐𝑙𝑖𝑐 𝐵𝐶𝑄

𝑈𝑛𝑎𝑟𝑦 𝐿𝑎𝑛𝑔𝑢𝑎𝑔𝑒

𝐿𝑖𝑛𝑒𝑎𝑟 𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝑚𝑖𝑛𝑔

…

𝐴𝑑𝑑 𝐵𝑜𝑜𝑙 𝑀𝑎𝑡𝑟𝑖𝑥

Where is the popular model, such as Transformer?

The parallelism tradeoff: Limitations of log-precision transformers. TACL 2023.
Chain of Thought Empowers Transformers to Solve Inherently Serial Problems. Arxiv 2024.

Parallelism

5

Before We Start

There is a contradiction between
expressiveness and parallelism.

Problem can solve

without COT

𝐿𝑂𝐺𝐶𝐹𝐿

𝑁𝐶1

𝑃

…

𝑁𝐶2

𝑁𝐿

𝑆𝐿

𝑇𝐶0

𝐴𝐶0

𝑁𝐶0

𝑀𝑎𝑡𝑟𝑖𝑥 𝐼𝑛𝑣𝑒𝑟𝑠𝑒

𝑆5, 𝑃𝑦𝑡ℎ𝑜𝑛, 𝐶ℎ𝑒𝑠𝑠

𝑃𝑎𝑟𝑖𝑡𝑦 𝐶ℎ𝑒𝑐𝑘

𝑆𝑇𝐶𝑂𝑁

𝑈𝑆𝑇𝐶𝑂𝑁

𝐴𝑐𝑦𝑐𝑙𝑖𝑐 𝐵𝐶𝑄

𝑈𝑛𝑎𝑟𝑦 𝐿𝑎𝑛𝑔𝑢𝑎𝑔𝑒

𝐿𝑖𝑛𝑒𝑎𝑟 𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝑚𝑖𝑛𝑔

…

𝐴𝑑𝑑 𝐵𝑜𝑜𝑙 𝑀𝑎𝑡𝑟𝑖𝑥

Where is the popular model, such as Transformer?

𝑇𝐶0 𝑜𝑟 𝐴𝐶0 (log or constant precision)

The parallelism tradeoff: Limitations of log-precision transformers. TACL 2023.
Chain of Thought Empowers Transformers to Solve Inherently Serial Problems. Arxiv 2024.

Parallelism

6

Before We Start

One the most important reason that Transformer beat RNN:

GPUs + High Parallelism

7

Before We Start

One the most important reason that Transformer beat RNN:

GPUs + High Parallelism

Is there a model with more expressiveness than
transformer but also can be parallelized in GPUs ?

However, we know that there is a contradiction between
expressiveness and parallelism.

8

Before We Start

DeltaNet: A model which beyond 𝑇𝐶0

1980s and 1990s

https://web.cs.umass.edu/publication/docs/1980/UM-CS-1980-018.pdf

𝑊𝑃𝑡+1 = 𝑊𝑃𝑡 + 𝑐𝑝 𝑍𝑡 − 𝑊𝑃𝑡−1𝑤𝑡−1 𝑥𝑡−1
⊤

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=2f0becffd2f44b198d28074d01722e4c7905dae2

https://www.cs.toronto.edu/~fritz/absps/fastweights.pdf

2020s

𝑆𝑡 = 𝑆𝑡−1 + 𝛽𝑡 𝑣𝑡 − 𝑆𝑡−1𝑘𝑡 𝑘𝑡
⊤

Parallelizing Linear Transformers with the Delta Rule over Sequence Length. NeurIPS 2024. 9

https://web.cs.umass.edu/publication/docs/1980/UM-CS-1980-018.pdf
https://web.cs.umass.edu/publication/docs/1980/UM-CS-1980-018.pdf
https://web.cs.umass.edu/publication/docs/1980/UM-CS-1980-018.pdf
https://web.cs.umass.edu/publication/docs/1980/UM-CS-1980-018.pdf
https://web.cs.umass.edu/publication/docs/1980/UM-CS-1980-018.pdf
https://web.cs.umass.edu/publication/docs/1980/UM-CS-1980-018.pdf
https://web.cs.umass.edu/publication/docs/1980/UM-CS-1980-018.pdf

Before We Start

DeltaNet: A model which beyond 𝑇𝐶0

1980s and 1990s

𝑊𝑃𝑡+1 = 𝑊𝑃𝑡 + 𝑐𝑝 𝑍𝑡 − 𝑊𝑃𝑡−1𝑤𝑡−1 𝑥𝑡−1
⊤

2020s

𝑆𝑡 = 𝑆𝑡−1 + 𝛽𝑡 𝑣𝑡 − 𝑆𝑡−1𝑘𝑡 𝑘𝑡
⊤

Expect the internal output 𝑊𝑃𝑡−1𝑤𝑡−1/𝑆𝑡−1𝑘𝑡 to be consistent
with the feedback 𝑍𝑡/𝑣𝑡, and adjust the internal state 𝑊𝑃/𝑆
based on the inconsistency (𝑍𝑡 −𝑊𝑃𝑡−1𝑤𝑡−1)/ 𝑣𝑡 − 𝑆𝑡−1𝑘𝑡

with a learning rate 𝑐𝑝/𝛽𝑡 .

Regarding this update rule, it can have expressive power beyond 𝑇𝐶0 . Readers can refer to RWKV-7 “Goose” with
Expressive Dynamic State Evolution. Arxiv 2025. 10

Before We Start

DeltaNet: A model beyond 𝑇𝐶0

1980s and 1990s

𝑊𝑃𝑡+1 = 𝑊𝑃𝑡 + 𝑐𝑝 𝑍𝑡 − 𝑊𝑃𝑡−1𝑤𝑡−1 𝑥𝑡−1
⊤

2020s

𝑆𝑡 = 𝑆𝑡−1 + 𝛽𝑡 𝑣𝑡 − 𝑆𝑡−1𝑘𝑡 𝑘𝑡
⊤

Most importantly, Songlin Yang et al find a efficient parallel
strategy on GPUs, which makes this model have the potential
to become a part of modern LLM

Parallelizing Linear Transformers with the Delta Rule over Sequence Length. NeurIPS 2024.

11

Before We Start

Limitation of limited state space.

Combine Delta Rule with Transformer.

Difficult to remember long sequences[1].

Transformers can adapt to a form of dynamic sparsity[2].

...

[1] Repeat after me: Transformers are better than state space models at copying. ICML 2024.
[2] When Do Transformers Outperform Feedforward and Recurrent Networks? A Statistical Perspective. Arxiv2025.12

Part 1. Associative Memory and Its Capacity

13

Associative Memory

• Associative memory is defined as the ability to learn and
remember the relationship between unrelated items.

“Paris” “Eiffel Tower”

“Kobe” “Bryant”

14

Associative Memory

• Like a dictionary:
• We have keys and values;
• Learning is the process of acquiring the fuzzy mapping.

Memorykey value

Training Inference

Memoryquery value

• Associative memory is defined as the ability to learn and
remember the relationship between unrelated items.

15

Simplest Model for Associative Memory

• Suppose we have key-value pairs (𝑘𝑖 , 𝑣𝑖) 𝑡 where the keys are
orthogonal. We can store these relationships into an outer-
product associative memory (Kohonen 1972):

• Query with 𝑞 = 𝑘𝑖 we get perfect retrieval:

𝑜 = 𝑆𝑡𝑘𝑖 = 𝑣𝑖𝑘𝑖
𝑇𝑘𝑖 +

𝑗≠𝑖

𝑣𝑗𝑘𝑗
𝑇𝑘𝑖 = 𝑣𝑖

• This kind of outer-product memory is also known as linear
attention.

𝑆𝑡 =

𝑖=1

𝑡

𝑣𝑖𝑘𝑖
𝑇

16

Measuring Retrieval Error

• What if keys are not orthonormal？

𝑜 = 𝑆𝑡𝑘𝑖 = 𝑣𝑖 𝑘𝑖
𝑇𝑘𝑖 +

𝑗≠𝑖

𝑣𝑗𝑘𝑗
𝑇𝑘𝑖

≈ 𝑣𝑖

• Define inverse retrieval SNR (Signal-to-Noise Ratio):

𝑆𝑁𝑅−1 = 𝔼𝒗𝑗,𝒌𝑗

𝒓 2

𝑐2 𝒗𝑖
2

• A larger value indicates a higher noise component, resulting in
lower retrieval accuracy.

Signal 𝒗𝑖𝑐

Noise 𝒓

17

Measuring Retrieval Error

• Considering keys and values are i.i.d. standard Gaussian vectors.
We can quantitatively calculate the inverse SNR:

𝑆𝑁𝑅𝐿𝑖𝑛𝑒𝑎𝑟
−1 ≈

𝑁

𝑑

• To attain a target SNR, the linear model width d must grow
linearly with the sequence length N;

• This explains why linear attention usually has poor retrieval
performance.

18

Kernel Trick

• Introducing a kernel function 𝜅 𝑥, 𝑦 = 𝜙 𝑥 𝑇𝜙 𝑦 . 𝜙 ⋅ maps
keys into higher-dimensional space.

𝑆𝑡 =

𝑖=1

𝑡

𝑣𝑖𝜙 𝑘𝑖
𝑇

𝑜 = 𝑆𝑡𝜙(𝑞) =

𝑖=1

𝑡

𝑣𝑗𝜙 𝑘𝑖
𝑇𝜙(𝑞) =

𝑖=1

𝑡

𝑣𝑖𝜅(𝑘𝑖 , 𝑞)

• Greater separability among the vectors leads to lower retrieval
error.

19

Kernel Trick

• Also, considering 𝑞 = 𝑘𝑖 , and assuming keys and values are i.i.d.
standard Gaussian, we get:

𝑆𝑁𝑅𝜅
−1 = 𝑁

𝔼𝒌𝑗
𝜅2 𝑘𝑗 , 𝑘𝑖

𝜅2 𝑘𝑖 , 𝑘𝑖

How much the kernel
suppresses irrelevant features

How much the kernel amplifies
the matched features

20

Exp Kernel

• For 𝜅 𝑥, 𝑦 = exp
𝑥𝑇𝑦

𝜏
 and 𝜏 = 𝑑, we get standard softmax

attention without normalization:

𝑜 = 𝑆𝑡𝜙(𝑞) =

𝑖=1

𝑡

𝑣𝑖 exp
𝑘𝑖

𝑇𝑞

𝑑

• Inverse SNR is:

• From 𝒅 = 𝓞(𝑵) in linear attention to 𝒅 = 𝓞(𝐥𝐨𝐠𝟐 𝑵) .

𝑆𝑁𝑅exp
−1 = 𝑁 exp −

2(𝜏 − 1)

𝜏2
𝑑

21
Understanding Transformer Reasoning Capabilities via Graph Algorithms. NeurIPS 2024.

Exp Kernel

𝑆𝑁𝑅exp
−1 = 𝑁 exp −

2(𝜏 − 1)

𝜏2
𝑑

• Increase d improves retrieval (but in most cases d is enough).
• Reducing 𝜏 but keeping it above 1 improves retrieval.
• Multihead is good for softmax attention, but not good for linear.

22

ReLU Kernel
• FFN is associative memory with 𝜅 𝑥, 𝑦 = ReLU 𝑥𝑇𝑦 :

• Query is hidden state 𝑥, keys and values are learnable weights.

Inverse SNR is :

𝑆𝑁𝑅ReLU
−1 ≈

𝑁

2𝑑
We suspect a kernel with lower retrieval precision encourages a
more polysemantic key–value memory, which is suitable for FFN.

𝐹𝐹𝑁 𝑥 =

𝑖=1

𝑚

𝑊𝑉𝑖

𝑇 ReLU(𝑊𝐾𝑖
𝑥)

23

Architecture Symmetry

• We suspect FFN can benefit from multihead too [1].

[1] Attention is all you need. Arxiv 2017. v2
24

Architecture Symmetry

• Integrating MoE into
attention we get MoBA.

Moba: Mixture of block attention for long-context llms. Arxiv 2025
25

Architecture Symmetry
• Gating like SwiGLU is

underexplored. FoX is a
special case here：

𝑔𝑖 𝑥𝑖:𝑡 = ෑ

𝑗=𝑖+1

𝑡

𝛼𝑗(𝑥𝑗)

Forgetting transformer: Softmax attention with a forget gate. ICLR 2025 26

Part 2. Update the Associative Memory

27

How is associative memory updated?

• Taking the linear model as an example,

• 𝑆𝑡 = σ𝑖=1
𝑡−1 𝑣𝑖𝑘𝑖

⊤

𝑆𝑡−1

+ 𝑣𝑡𝑘𝑡
⊤

 = 𝑆𝑡−1 − −𝑣𝑡𝑘𝑡
⊤

𝜕𝐿𝑡

𝜕𝑆𝑡−1

28

How is associative memory updated?

• Taking the linear model as an example,

𝐿𝑡 𝑆𝑡−1 = − < 𝑆𝑡−1𝑘𝑡 , 𝑣𝑡 >

• 𝑆𝑡 = σ𝑖=1
𝑡−1 𝑣𝑖𝑘𝑖

⊤

𝑆𝑡−1

+ 𝑣𝑡𝑘𝑡
⊤

 = 𝑆𝑡−1 − −𝑣𝑡𝑘𝑡
⊤

𝜕𝐿𝑡
𝜕𝑆𝑡−1

29

How is associative memory updated?

• Taking the linear model as an example,

𝐿𝑡 𝑆𝑡−1 = − < 𝑆𝑡−1𝑘𝑡 , 𝑣𝑡 >

The loss is unbounded.

• 𝑆𝑡 = σ𝑖=1
𝑡−1 𝑣𝑖𝑘𝑖

⊤

𝑆𝑡−1

+ 𝑣𝑡𝑘𝑡
⊤

 = 𝑆𝑡−1 − −𝑣𝑡𝑘𝑡
⊤

𝜕𝐿𝑡

𝜕𝑆𝑡−1

30

How is associative memory updated?

Solution 1: regularize ||𝑆||𝐹

• 𝐿𝑡 𝑆𝑡−1 = − < 𝑆𝑡−1𝑘𝑡 , 𝑣𝑡 > +
1

2
|| 1 − 𝜆𝑡 𝑆𝑡−1||𝐹

2

31

How is associative memory updated?

Solution 1: regularize ||𝑆||𝐹

• 𝐿𝑡 𝑆𝑡−1 = − < 𝑆𝑡−1𝑘𝑡 , 𝑣𝑡 > +
1

2
|| 1 − 𝜆𝑡 𝑆𝑡−1||𝐹

2

• Update form: 𝑆𝑡 = 𝜆𝑡𝑆𝑡−1 + 𝑣𝑡𝑘𝑡
⊤

This is gated linear model.

32

How is associative memory updated?

Solution 1: regularize ||𝑆||𝐹

• 𝐿𝑡 𝑆𝑡−1 = − < 𝑆𝑡−1𝑘𝑡 , 𝑣𝑡 > +
1

2
|| 1 − 𝜆𝑡 𝑆𝑡−1||𝐹

2

• Update form: 𝑆𝑡 = 𝜆𝑡𝑆𝑡−1 + 𝑣𝑡𝑘𝑡
⊤

This is gated linear model.

• Gating implies a bias that older information is less important.

33

How is associative memory updated?

Solution 2: regularize ||𝑆𝑘||

• 𝐿𝑡 𝑆𝑡−1 = − < 𝑆𝑡−1𝑘𝑡 , 𝑣𝑡 > +
1

2
|| 𝑆𝑡−1𝑘𝑡||

2

=
1

2
||𝑆𝑡−1𝑘𝑡 − 𝑣𝑡||2 −

1

2
||𝑣𝑡||2

34

How is associative memory updated?

Solution 2: regularize ||𝑆𝑘||

• 𝐿𝑡 𝑆𝑡−1 = − < 𝑆𝑡−1𝑘𝑡 , 𝑣𝑡 > +
1

2
|| 𝑆𝑡−1𝑘𝑡||

2

=
1

2
||𝑆𝑡−1𝑘𝑡 − 𝑣𝑡||2 −

1

2
||𝑣𝑡||2

: =
1

2
||𝑆𝑡−1𝑘𝑡 − 𝑣𝑡||2

35

How is associative memory updated?

Solution 2: regularize ||𝑆𝑘||

• 𝐿𝑡 𝑆𝑡−1 =
1

2
||𝑆𝑡−1𝑘𝑡 − 𝑣𝑡||2

• Update form: 𝑆𝑡 = 𝑆𝑡−1 𝐼 − 𝑘𝑡𝑘𝑡
⊤ + 𝑣𝑡𝑘𝑡

⊤

This is DeltaNet（Delta rule update）.

36

How is associative memory updated?

Solution 2: regularize ||𝑆𝑘||

• 𝐿𝑡 𝑆𝑡−1 =
1

2
||𝑆𝑡−1𝑘𝑡 − 𝑣𝑡||2

• Update form: 𝑆𝑡 = 𝑆𝑡−1 𝐼 − 𝑘𝑡𝑘𝑡
⊤ + 𝑣𝑡𝑘𝑡

⊤

This is DeltaNet（Delta rule update）.

• How to understand the magic gate 𝐼 − 𝑘𝑡𝑘𝑡
⊤ ？

37

How is associative memory updated?

Understand delta rule

• 𝑆𝑡 = 𝑆𝑡−1 𝐼 − 𝑘𝑡𝑘𝑡
⊤ + 𝑣𝑡𝑘𝑡

⊤ = σ𝑖=1
𝑡−1 𝑣𝑖𝑘𝑖

⊤(𝐼 − 𝑘𝑡𝑘𝑡
⊤) + 𝑣𝑡𝑘𝑡

⊤

= 𝑆𝑡−1 + (𝑣𝑡 − σ𝑖=1
𝑡−1 𝑣𝑖 𝑘𝑖

⊤𝑘𝑡

Info overlap with 𝑣𝑡

)𝑘𝑡
⊤

• Delta rule is a smarter gate for erasing overlapping historical info.

38

How is associative memory updated?

Solution 3: normalization (e.g., σ𝑖=1
𝑡 𝜅(𝑞, 𝑘𝑖))

• When 𝑡 is sufficiently large:

𝐿𝑡 𝑆𝑡−1 ≈
1

𝑡
(− < 𝑆𝑡−1𝑘𝑡 , 𝑣𝑡 > +

1

2
||𝑆𝑡−1||𝐹

2)

• Besides regularizing ||𝑆||𝐹 ,
1

𝑡
also suppresses numerical

explosion.
39

Part 3. Exploration of Next Generation Models

40

What is the essential difference?

Solution：
• 1) Decay:

• 2) Delete:

𝑆𝑡+1 = 𝑆𝑡 + 𝑣𝑡𝑘𝑡
⊤ 𝑆𝑡 → ∞

𝑆𝑡+1 = 𝑆𝑡(𝛼𝑡𝐼) + 𝑣𝑡𝑘𝑡
⊤

𝑆𝑡+1 = 𝑆𝑡(𝐼 − 𝑘𝑡𝑘𝑡
⊤) + 𝑣𝑡𝑘𝑡

⊤

Data independent: RetNet,RWKV4
Data dependent: Gated linear attention,Mamba2,RWKV6

Without decay: DeltaNet
With decay: RWKV7, Gated DeltaNet

41

Intuitively speaking:

𝑆𝑡+1 = 𝑆𝑡(𝛼𝑡𝐼) + 𝑣𝑡𝑘𝑡
⊤ 𝑆𝑡+1 = 𝑆𝑡(𝐼 − 𝑘𝑡𝑘𝑡

⊤) + 𝑣𝑡𝑘𝑡
⊤

Decay Delete

𝑆𝑡 =

𝑖=1

𝑡
𝛽𝑡

𝛽𝑖
𝑣𝑖𝑘𝑖

⊤

𝛽𝑡 = ෑ

𝑖=1

𝑡

𝛼𝑖 𝑢𝑡 = 𝑣𝑡 −

𝑖=1

𝑡−1

𝑘𝑖 ⋅ 𝑘𝑡 𝑢𝑖

𝑆𝑡 =

𝑖=1

𝑡

𝑢𝑖𝑘𝑖
⊤

The computation of β can be treated as a prefix sum, which allows for an efficient implementation.
The computation of u seems to be inherently sequential, requiring an O(t) loop?

42

Mathematically speaking:

The computation of β and u have different parallel complexity.

1. What is the length of the critical path?
O(logk n) → {TCk, ACk, NCk}

2. How many fan-in one node can receive?
2 → NC
unlimit → {AC, TC}

3.Can we use a Threshold Gate out of OR/AND/NOT?
Yes → TC
No → {NC, AC}

Three basic questions for determining Parallel
Complexity:

43

Where is the popular model?

Memory size

𝐿𝑆𝑇𝑀, 𝑅𝑁𝑁

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟

𝐿𝑂𝐺𝐶𝐹𝐿

𝑁𝐶1

𝑃

…

𝑁𝐶2

𝑁𝐿

𝑆𝐿

𝑇𝐶0

𝐴𝐶0

𝑁𝐶0

𝑀𝑎𝑡𝑟𝑖𝑥 𝐼𝑛𝑣𝑒𝑟𝑠𝑒

𝑆5, 𝑃𝑦𝑡ℎ𝑜𝑛, 𝐶ℎ𝑒𝑠𝑠

𝑃𝑎𝑟𝑖𝑡𝑦 𝐶ℎ𝑒𝑐𝑘

𝑆𝑇𝐶𝑂𝑁

𝑈𝑆𝑇𝐶𝑂𝑁

𝐴𝑐𝑦𝑐𝑙𝑖𝑐 𝐵𝐶𝑄

𝑈𝑛𝑎𝑟𝑦 𝐿𝑎𝑛𝑔𝑢𝑎𝑔𝑒

𝐿𝑖𝑛𝑒𝑎𝑟 𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝑚𝑖𝑛𝑔

…

𝐴𝑑𝑑 𝐵𝑜𝑜𝑙 𝑀𝑎𝑡𝑟𝑖𝑥

𝑀𝑎𝑚𝑏𝑎2, 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑟, 𝑅𝑒t𝑁𝑒𝑡,
𝐿𝑖𝑛𝑒𝑎𝑟 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛, 𝐺𝐿𝐴, 𝑅𝑊𝐾𝑉6 …

𝐷𝑒𝑙𝑡𝑎𝑁𝑒𝑡, 𝑅𝑊𝐾𝑉7, 𝐺𝑎𝑡𝑒𝑑 𝐷𝑒𝑙𝑡𝑎𝑁𝑒𝑡. .

𝐶𝑁𝑁 𝑤𝑖𝑡ℎ 𝐹𝑖𝑥𝑒𝑑 𝑠𝑖𝑧𝑒 𝑘𝑒𝑟𝑛𝑒𝑙

𝑂(1) 𝑂(log 𝑇) 𝑂(𝑇)

Expressivity

The higher the parallelism, the lower the expressiveness. We list representative tasks of common complexity next to them.

𝐿𝑜𝑔𝑙𝑖𝑛𝑒𝑎𝑟 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛

44

Important tasks beyond 𝑇𝐶0

• 𝑁𝐶1: Python, Chess, Entities…

• Beyond 𝑁𝐶1:Graph
connectivity …

The illusion of state in state-space models. ICML 2024.

45

When Transformer learn task beyond 𝑇𝐶0

• Difficult to learn: context
length 32 need 16 layers

• Difficult to generalize:
accuracy 0 out of
distribution

𝑆5: Track the swap of 5 elements, which is beyond 𝑇𝐶0

Implicit Language Models are RNNs: Balancing Parallelization and Expressivity. Arxiv 2025.

46

DeltaFormer: Make Transformer Beyond 𝑇𝐶0

• Rethink Transformer from delta rule:

𝑆𝑡 = 𝑆𝑡−1(𝐼 − 𝑘𝑡𝑘𝑡
⊤) + 𝑣𝑡𝑘𝑡

⊤Delta rule:

+Kernel Trick:

𝑆𝑡 = 𝑆𝑡−1(𝐼 − 𝜙 𝑘𝑡 𝜙(𝑘𝑡
⊤)) + 𝑣𝑡𝜙(𝑘𝑡

⊤)

𝜅(𝑘𝑖 , 𝑘𝑗) = 𝜙 𝑘𝑖
𝑇𝜙(𝑘𝑗)

47

Derivation of DeltaFormer

𝑆𝑡 = 𝑆𝑡−1(𝐼 − 𝜙 𝑘𝑡 𝜙(𝑘𝑡
⊤)) + 𝑣𝑡𝜙(𝑘𝑡

⊤)

𝜅(𝑘𝑖 , 𝑘𝑗) = 𝜙 𝑘𝑖
𝑇𝜙(𝑘𝑗)

𝑢𝑡 = 𝑣𝑡 −

𝑖=1

𝑡−1

𝜅 𝑘𝑡 , 𝑘𝑖 𝑢𝑖

𝑜𝑡 =

𝑖=1

𝑡

𝜅 𝑞𝑡 , 𝑘𝑖 𝑢𝑖

By method of undetermined coefficients

𝑢𝑡 = 𝛼𝑡𝑣𝑡 − 𝛽𝑡

𝑖=1

𝑡−1

𝜅1 𝑤𝑡 , 𝑘𝑖 𝑢𝑖

𝑜𝑡 =

𝑖=1

𝑡

𝜅2 𝑞𝑡 , 𝑘𝑖 𝑢𝑖

General
form

48

Efficient chunk-wise implementation

• Recurrent:

• Parallelize :

• Chunk-wise:

𝑢𝑡 = 𝑣𝑡 −

𝑖=1

𝑡−1

𝜅 𝑘𝑡 , 𝑘𝑖 𝑢𝑖

𝑈 = 𝑉 − 𝐴𝑈 𝑈 = 𝐼 + 𝐴 −1𝑉

𝑈𝐶 = 𝑉𝑐 − 𝐴𝑐 𝑈𝑐 − 𝐴𝑐,𝑝𝑈𝑝

𝑈𝐶 = 𝐼 + 𝐴𝑐
−1(𝑉𝑐 − 𝐴𝑐,𝑝𝑈𝑝)

49

Efficient chunk-wise implementation

Current Implementation

• Recurrent (Serial): O(T) loop

• Parallelize(Torch trsv):
Too much I/0.

• Chunk-wise(dfpa): O(T/C) loop
with 𝑂(𝑇2𝐷 + 𝑇𝐶𝐷 + 𝑇𝐶2) flops

50

Make Transformer beyond 𝑇𝐶0

• More expressive:

Can track the exchange of 𝑛
elements with 𝑑 = 𝑂(log 𝑛).
In the Lemma 2 of rwkv7, they tracking 5 elements used 5 dimensions

• Native compression:

If we read out and rewrite KU
cache every O(n) step, the
actually KU cache is 𝑂 𝑛𝑙𝑜𝑔𝑛 .

51

Learn from data -- Tracking

• DeltaFormer with any kernel surpass Transformer in tracking.
• Accuracy: 8 layers Transformer < 0.50,

1 layers DeltaFormer can reach 1.00.

52

Learn from data -- Tracking

• Nonlinear kernel has more capacity than linear.
• Track n elements with dim d < n:

linear → drop much , nonlinear > 0.95.

53

Learn from data -- Tracking

• GQA like method enhance nonlinear kernel with the same KU cache
• Track 5 elements with a kv head with dim 3, but we have more “query” 𝑤.

54

Learn from data -- Tracking

• Curriculum learning: when accuracy reach 0.99, context length × 2
• With curriculum learning: RoPE can NOT reach 1.00, NoPE can

reach 1.00.
• Without curriculum learning: RoPE can learn, NoPE can NOT learn.

55

Learn from data – Reachability of DAG

• The reachability of directed acyclic graphs:
Transformer get 0.8, DeltaFormer can reach 1.00.

56

Learn from data – Dyck grammar

• Example: “((()())(()))”

Context length = 64, next token prediction, compress Dyck grammar Better compression ratio

𝑢𝑡 = 𝑣𝑡 + 𝑢𝑡−1 Can record whether there are more left parentheses than right parentheses at present.

57

Learn from data – From Dyck to real code

• 14B total parameters model, 500B training token

Total loss: DeltaFormer lead baseline by 0.005
Code loss: DeltaFormer lead baseline by 0.03

This implies that the model‘s ability to compress more complex knowledge exceeds that of the Transformer.

58

Learn from data – Induction heads
• Better learn induction heads: “… AB… A” predict “B”

The calculation of 𝑢 can to some extent replace the function of copy heads,
thereby promoting the formation of induction heads

59

DeltaFormer – Future work

• Optimization. -- Stability training and scaling ..

• Fine grained design. --GQA / Different kernel / Head

Nums/ Head Dims / PE / Sparse…

• Implementation. -- Fast..

• Practical. -- Expressivity/ KU cache/ Flops Trade off..

• More expressive but also practical model.

60

Expressivity

Memory size

𝐿𝑆𝑇𝑀, 𝑅𝑁𝑁

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟

𝐿𝑂𝐺𝐶𝐹𝐿

𝑁𝐶1

𝑃

…

𝑁𝐶2

𝑁𝐿

𝑆𝐿

𝑇𝐶0

𝐴𝐶0

𝑁𝐶0

𝐿𝑖𝑛𝑒𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟

𝐷𝑒𝑙𝑡𝑎𝑁𝑒𝑡

𝐶𝑁𝑁

𝑂(1) 𝑂(𝑇)

Short term trade off

Long term

𝑂(log 𝑇)

𝐿𝑜𝑔𝐿𝑖𝑛𝑒𝑎𝑟 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛

𝐷𝑒𝑙𝑡𝑎𝑓𝑜𝑟𝑚𝑒𝑟(𝑂𝑢𝑟𝑠)

61

Thanks for listening!

62

Q & A

63

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

