Test Loss

Progress in Al has been due to scaling 2 things:

rn

N

7 4.2
6 —— L=(D/5.4-1013)70:09
3.9
5-
3.0
4_
3.3
3-
3.0
10—° 10-7 1072 103 101 101 108 109
Compute Dataset Size

PF-days, non-embedding tokens

While compute is growing data is not growing!

llya Sutskever - Test of time talk @ NeurlPS 2024

We will loose out of unique data by 2028

I i
I Ip— AT |
N p———
------------------- I ,—"
m 10 o S
c I $
<
8
...5 1014 ________ RO g LT i
g __________________ -
. I I
§ ’ I I
£ I |
3 10 : : —— Stock of data
o “ o | I Median date of
2 Falcon-180B A full stock utilization
é 1012 : : ——— Dataset size projection
= ® /’ ® PaLM I I Median date of
GPJFJ—’3 I I ——~ full stock utilization
g | | (5x overtraining)
”’ [|
101t - I |
2020 2022 2024 2026 2028 2030 2032 2034

Year

Villalobos et al “Will we run out of data? Limits of LLM scaling based on human-generated data”

We need more data-efficient algorithms to
keep the scaling trend going..

Primarily there have been 2 algorithms for scaling

Diffusion objective proposed

Autoregressive objective proposed in Text: GPT 2 in Vision- DDPM

Language Models are Unsupervised Multitask Learners Denoising Diffusion Probabilistic Models

Alec Radford * ' Jeffrey Wu ! Rewon Child! David Luan' Dario Amodei **' Ilya Sutskever **!

Jonathan Ho Ajay Jain Pieter Abbeel
UC Berkeley UC Berkeley UC Berkeley
Abstract competent generalists. We would like to move towards more jonathanho@berkeley.edu ajayj@berkeley.edu pabbeel@cs.berkeley.edu

general systems which can perform many tasks — eventually
without the need to manually create and label a training
dataset for each one.

Natural language processing tasks, such as ques-
tion answering, machine translation, reading com-
prehension, and summarization, are typically

Both objective maximize joint likelihoods

The only difference between the two is the factorization of the
joint distribution!

Success of both Diffusion and AR has created
both excitement and confusion.

Language community is exploring diffusion on text.

Structured Denoising Diffusion Models in Discrete

Likelihood-Based Diffusion Language Models
State-Spaces

Ishaan Gulrajani Tatsunori B. Hashimoto
Stanford University Stanford University
Jacob Austin; Daniel D. Johnson; Jonathan Ho, Daniel Tarlow & Rianne van den Berg' igul222@gmail . com thashim@stanford.edu

Google Research, Brain Team
{jaaustin,ddjohnson, jonathanho,dtarlow,riannevdberg}@google.com
PLAID applied commonly used continuous
diffusion (via gaussian noise) on text, by
first projecting discrete text tokens first to
embeddings and then doing standard
diffusion.

D3PM introduced discrete diffusion on text,
that does forward diffusion via random
masking

Success of both Diffusion and AR has created
both excitement and confusion.

Lot more papers doing diffusion on text:

Diffusion-LM - Diffusion Improves Controllable Text Generation (NeurIPS 2022)

* AR-Diffusion — Auto-Regressive Diffusion for Text Generation (NeurIPS 2023)

* SEDD - Score Entropy Discrete Diffusion (arXiv 2024, analysis paper)

* DiffuSeq — Sequence-to-Sequence Text Generation with Diffusion Models (ICLR 2023)

» SeqDiffuSeq — Sequence-to-Sequence Diffusion Model with Self-Conditioning (NAACL 2024)
* LLaDA - Large Language Diffusion Model from Scratch (arXiv 2025)

* DiffusionBERT - Improving Generative Masked LMs with Diffusion (arXiv 2022)

* CodeFusion — A Pre-trained Diffusion Model for Code Generation (EMNLP 2023)

* Block Diffusion: Interpolating Between Autoregressive and Diffusion Language Models (ICLR 2025)
* Bit Diffusion — Analog Bits: Generating Discrete Data using Diffusion Models (ICLR 2022)

* RDLM - Continuous Diffusion Model for Language Modeling (arXiv 2025)

* EDLM - Energy-Based Diffusion Language Models for Text Generation (arXiv 2024)

https://arxiv.org/abs/2310.17680

Success of both Diffusion and AR has created

both excitement and confusion.

Similarly Vision community is exploring Autoregressive on Images.

Scaling Autoregressive Models for Content-Rich
Text-to-Image Generation

Jiahui Yu* Yuanzhong Xu' Jing Yu Koh! Thang Luong’ Gunjan Baid'
Zirui Wang' Vijay Vasudevan' Alexander Ku®
Yinfei Yang Burcu Karagol Ayan Ben Hutchinson
Wei Han Zarana Parekh Xin Li Han Zhang
Jason Baldridge® Yonghui Wu*

PARTI trained a foundational autoregressive
model for image generation objective.

Visual Autoregressive Modeling: Scalable Image
Generation via Next-Scale Prediction

Keyu Tian'2, Yi Jiang?f, Zehuan Yuan®*, Bingyue Peng?, Liwei Wang!:*
1Peking University 2Bytedance Inc
keyutian@stu.pku.edu.cn, jiangyi.enjoy@bytedance.com,
yuanzehuan@bytedance.com, bingyue.peng@bytedance.com, wanglw@pku.edu.cn

VAR introduced scale Autoregressive and
achieved state-of the-art on image
generation benchmarks.

Success of both Diffusion and AR has created
both excitement and confusion.

Lot more papers doing Autoregressive on images:

* ImageGPT - Generative Pretraining from Pixels (OpenAl, 2020)

* RQ-Transformer — Residual Quantization for Scalable Autoregressive Image Modeling (CVPR 2022)
* MQ-VAE + Stackformer — Masked Vector Quantization for Fast and High-Fidelity AR Models (CVPR 2023)
* NFIG - Next-Frequency Image Generation (arXiv 2025)

* CART - Compositional Auto-Regressive Transformer (arXiv 2024)

* DALL-E — Zero-Shot Text-to-Image Generation (arXiv 2021)

* LlamaGen — Large Language Model-based Autoregressive Image Generation (arXiv 2024)

* RAR - Randomized AutoRegressive Models for Bidirectional Visual Generation (arXiv 2024)

* Emu3 — Next-Token Prediction is All You Need (arXiv 2024)

* CAR - Controllable Autoregressive Modeling for Visual Generation (ICLR 2025)

* Chameleon — Mixed-Modal Early-Fusion Foundation Models (arXiv 2024)

* Anole — Open Autoregressive Multimodal Models for Image-Text Generation (arXiv 2024)

Similar confusion in Robotics.

Papers doing Autoregressive Papers doing Diffusion

* Diffusion Policy — Visuomotor Policy Learning via Action Diffusion
(Chi et al., RSS 2023)

* 3D Diffuser Actor — Policy Diffusion with 3D Scene Representations
(Ke et al., CoRL 2024)

FAST: Efficient Action Tokenization for Vision-Language-Action
Models (arXiv 2025)

RT-1 — Robotics Transformer for Real-World Control at Scale (RSS 2023)

ARMA4R - Pre-training Auto-regressive Robotic Models with 4D

Representations (arXiv 2025) * 3D Diffusion Policy — Generalizable Visuomotor Policy Learning via

_ _ o _ _ Simple 3D Representations (Ze et al., RSS 2024)
CARP - Visuomotor Policy Learning via Coarse-to-Fine Autoregressive] . o _ o
Prediction (arXiv 2024) * ChainedDiffuser — Unifying Trajectory Diffusion and Keypose

Prediction for Robotic Manipulation (Zhou et al., CoRL 2024)
HMA — Heterogeneous Masked Autoregression for modeling action-video L ' , ' o
dynamics (arXiv 2024) « SkillDiffuser — Interpretable Hierarchical Planning via Skill

Abstractions (Liang et al., CVPR 2024)

DiffusionVLA — Scaling Robot Foundation Models via Unified Diffusion
and Autoregression (Wang et al., 2024)

Decision Transformer — Reinforcement Learning via Sequence Modeling
(Chen et al., NeurIPS 2021) *

ARP - Autoregressive Action Sequence Learning for Robotic .) _ o)
Manipulation (Zhang et al., CoRL 2024) * DiffuserLite — Towards Real-time Diffusion Planning for Robot

. . . . Manipulation (Liu et al., 2024)
Q-Transformer — Scalable Offline Reinforcement Learning via

Autoregressive Q-Functions (Chebotar et al,, CoRL 2023) * ContactDiffusion — Learning Contact-Rich Manipulation via Diffusion
Models (Simeonov et al., 2024)

Background: How Autoregressive LLMs work -

L

pAR(xla . o '7331}) — Hp(wt | L1y 7$t—1)
t=1

They model data distribution in a left-to-right manner

Background: How Diffusion LLMs work -

Forward Noising Process for Continuous Diffusion:

q(Z¢ | x) :N(it;\/l—%w, %'I)

Forward Noising Process for Discrete Diffusion:
L

a(@: | z) = | [[- 1@, = MASKD) + (1 —) - L& = @3)]
1=1

Objective for Discrete Diffusion:

1
£Diffusion = —E,]Eﬁfrvqr — Z Ingg(iBz‘ | 53)
r 1eEM

However Prior methods show worse results for
Diffusion on Text

Model Type Parameters PPL (])
Continuous Diffusion (Diffusion-LM) 80M 118.62
Discrete Diffusion (MDLM) 110M 27.04
Autoregressive (AR) 110M 22.32

- Discrete Diffusion does better than Continuous Diffusion on Text

- Autoregressive still does the best

Numbers taken from: Sahoo etal “Simple and Effective Masked Diffusion Language Models”

Prior works show diffusion requires 16x more compute

than Autoregressive

AR

—— Diffusion

g
o
1

Validation Loss
(\&]
i

20 - -
10" 10% 10™

FLOPs
Nie et al “Scaling up Masked Diffusion Models on

Text”

Prior works conflate data and compute in a single plot

Does ditfusion require 16x more compute or 16x
more data?

We disentangle data and compute —

We study the diffusion and autoregressive models
in data-constrained settings

Diffusion Beats AR in Data-Constrainted Settings

Mihir Prabhudesai”, Mengning Wu* , Amir Zahed, Katerina Fragkiadaki, Deepak Pathak

Our motivation to pursue this project -

Let’s go back to diffusion training objective

Have

Car

—
Randomly Mask

<Mask>

Have

<Mask>

Car

—

Train Model to
Recover

Have

Car

Our motivation to pursue this project -

Let’s go back to diffusion training objective

Have

Car

—
Randomly Mask

<Mask>

<Mask>

Car

—

Train Model to
Recover

_
p
Have
&
'é
A
&
p
Car

Our motivation to pursue this project -

Let’s go back to diffusion training objective

4 N\ 4 Y 4

I <Mask> I
N\ J N\ J &
s N s N

Have I Have
—

L) — S) Y
(Random]y Mask (h Train Model to (

A A Recover A
S Y, N Y, \
s N s N ~

Car Car Car

Our motivation to pursue this project -

Let’s go back to diffusion training objective

Have [I]
_ y — —
Randomly Mask Train Model to
A Recover

Have

)
—

Our motivation to pursue this project -

Interestingly left-to-right masking gets included in diffusion training

Have

Car

—
Randomly Mask

<Mask>

<Mask>

<Mask>

—

Train Model to
Recover

Have

N\ [

Car

Our motivation to pursue this project -

Interestingly left-to-right masking gets included in diffusion training

Have

Car

—
Randomly Mask

Have

<Mask>

<Mask>

—

Train Model to
Recover

Have

Car

Our motivation to pursue this project -

Interestingly left-to-right masking gets included in diffusion training

4 N 4 N 4

I 1 I
g J g J _
4) 4 N 4

Have Have Have

(Random]y Mask () Train Model to (

A A Recover A
N\ J J
e A e

Car <Mask> Car

Our hypothesis -

Diffusion could be understood as implicit data augmentation on Autoregressive
Training

And one should do Data Augmentation only when they are data bottlenecked!

Prior works get worse results than Autoregressive, as everyone has been training
Diffusion LLMs in single-epoch settings!

We study Diffusion Models in Data-constrainted Settings

We train 200+ Diffusion and AR models at different dataset and Flop budgets

Pareto optimal tradeotff of validation loss and flops.

Pareto Frontier on 100M unique data

6.0
5.0 1
Z
-
4.0 1
1 Epoch:
Chinchilla Optimal
2.37e+15
10" 10" 102

FLOPs

== Diffusion Pareto Frontier === AR Pareto Frontier —== Where Diffusion beat AR

Loss

6.0 1

5.0 1

4.0 H

Pareto optimal tradeotff of validation loss and flops.

Pareto Frontier on 100M unique data

1 Epoch:
Chinchilla Optim
2.37e+15

10" 10" 10%°

FLOPs

== Diffusion Pareto Frontier === AR Pareto Frontier

—== Where Diffusion beat AR

Pareto optimal tradeotff of validation loss and flops.

Pareto Frontier on 100M unique data

6.0
5.0 1
Z
-
4.0 1
1 Epoch:
Chinchilla Optima
2.37e+15
10" 10" 10”
FLOPs

== Diffusion Pareto Frontier === AR Pareto Frontier —== Where Diffusion beat AR

Pareto optimal tradeoff of validation loss and flops.

Pareto Frontier on 100M unique data

6.0 |
I
1
I
1
1
I
5.0 1 | .
, Critical
2 | Compute Point
— I
I
I
1
I
4.0 1 |
! I
Chinchilla Optima |
2.37e+15 :
10" 10" 102
FLOPs

== Diffusion Pareto Frontier === AR Pareto Frontier —== Where Diffusion beat AR

Loss

Pareto optimal tradeoff of validation loss and flops.

Pareto Frontier on 100M unique data

6.0 1

5.0 1

4.0 1

Critical
Compute Point

1 Epoch:
Chinchilla Optima
2.37e+15

FLOPs

== Diffusion Pareto Frontier

- Diffusion Beats AR after a certain number of flops, which is much higher

than Chinchilla 1 epoch flop count.

Loss

Pareto Frontier on S0M unique data

4.6 - !
1
1
I
4.4 !
I
1
4.2 . | Critical
: Compute Point
1
i
4.0 [
I
I
3.8 - \ 1 Epoch: :
' Chinchilla Optimal |
1.48e+14 :
10" 10"
FLOPs
Where Diffusion beat AR

=== AR Pareto Frontier -

Params

1000M

M|~k - Autoreggqswe ach eves it’s best loss at 50 epochs, after which it overfits

How compute is distributed over parameters and epochs

1000M

Params

etter than Diffusion at 1 éfooc\h\bo\sv\(W\f\L X

Loss =7.07 owest Los Y Lowest Loss for 100M, Tokens

- Diffusign achieves-it'sbeast losskat 500 eptmhsm)g@ igns of owerfittiagoienddaen oo wkens

! - Best Ditfusion Iﬂ@)dé]?doeats the bespAutoregressive model. h.oss 3.71 vsikoss 3.5500 1000

Epochs Epochs

We fit data-constrained scaling laws on these models.

Parameters Training Tokens
found for AR in single-epoch setting

Villalobos et al “Scaling Laws for Neural Language Models”

Hoffmann et al “Training Compute-Optimal Large Language Models”

We fit data-constrained scaling laws on these models.

L(N, D) :@ + +E

@:U+(1—5)U (1—5)2[] (1—5)RDU

/ Effective Effec
Loivomn 1)
Effective number D L@% =+ U RD (1 T

Parameters
of Tokens Training Ngkens

T Half-Life of Data Reuse

found for AR in multi-epoch setting

|

‘ Muennighoff et al “Scaling Data-Constrained Language Models”

We fit data-constrained scaling laws on these models.

Table 1: Fitting metrics of the scaling law model for Diffusion and AR. Diffusion and AR achieves a
stronger fit across both phases.

(a) Initial fit. (b) Second step fit with extracted sc}in%rameters.
Model R? Loss Model R? Loss / R%, \ RY
Diffusion 0.9447 0.0002 Diffusion 0.9784 0.00079 | 493.89 1265.65
AR 0.9439 7.7532e—05 AR 0.7628 0.00361 \ 31.19 55.16
N

Half-life of data-reuse

Decay rate of data value under repetition.

Loss

3.9:9

3.8 1

3.79

3.5 1

3.4 1

3.34

3.3
3.2
2
P e T b | o3
3.0
2.9
oF N T E— o___ °
100% 50% 25% 0% 5%

Diffusion lel9
AR lel9

- Fitted scaling law curves (solid line), accurately follows the empirical datapoints

- Diffusion models have a much lower decay rate of data value under repetition.

Data Fraction

Diffusion 3el9
AR 3el9

@ Diffusion 1€20
® AR 1e20

1]
(1]
& hd i
[]
®
e Y i e
100% 50% 25% 10% 5%

Data Fraction

Predicted loss if repeating data value the same as unique

Delta Loss

Data Fraction

® AR Mean Points ¢
e Diffusion Mean Points
o
° o
]l e 4 e o
100% 50% 25% 10% 5%

[so-Flop Training curves with different epochs

Autoregressive Diffusion
—— AR 100 Ep. — Diffusion 100 Ep.
42 —— AR50 Ep. —— Diffusion 50 Ep.
—— AR20Ep. — Diffusion 20 Ep.
—— AR 10 Ep. 331 — Diffusion 10 Ep.
404 —— AR4Ep. —— Diffusion 4 Ep.
@ ' —— AR2Ep. @ —— Diffusion 2 Ep.
2 2 S 0 4
g g
= 3.8 =
< <
= =
S S 45
3.6 1
3.4+ 4.0 1
1G 2G 3G 4G 5G 6G 7G 8G 0 2G 4G 6G 8G 10G 12G 14G
Tokens Tokens

- We maintain the same number of Flops, and train for different epochs and data fractions

- For instance, 2 epoch with 50% unique data or 100 epochs with 1% unique data
- For diffusion, the training curves look similar but for AR there is a meaningful gap

Extrapolated Scaling laws

AR validation loss over training length

3.8x10°
3.6x10°
3.4% 10’
3.2% 101

3% 10

Validation Loss

2.8x10°
2.6x10°

24x10°1

N\ ——

Unique Scaling
217M AR
—— 425M AR
— 724M AR

1 Ep.

2 Ep.
1 Ep_4 Ep.

Repeating for 4 epochs is
almost as good as new data

~<
~ -~
~

~.
5 -~
-
—~

~ ——
-~ ——
-~
-
-~
——
-

.

100B 1T
Training Tokens

1B 10B

Validation Loss

Diffusion validation loss over training length

5% 10"

4% 10"

3% 10° 1

Unique Scaling

117M Diffusion
—— 217M Diffusion
—— 425M Diffusion
Repeating for 100 epochs is
N almost as good as new data
1B 10B 100B IT 10T 10(

Training Tokens

- At different Flop counts, AR and Diffusion loss curves, solid Line represents data-constrained
setting (multi epoch), while dotted line represents unique data setting (single epoch)

- AR gives the same loss as fresh data until 4 epochs, diffusion gives the same loss as fresh data

until 100 epochs.

Downstream Results

100M unique tokens 500M unique tokens

Benchmarks Random Baseline
AR Diffusion AR Diffusion

ARC-Easy [7] 25.00 35.63 37.84 43.79 45.95
BoolQ [6] 50.00 46.00 49.38 51.87 55.26
COPA [32] 50.00 56.33 59.00 67.00 64.83
HellaSwag [46] 25.00 27.37 30.24 32.28 35.33
PiQA 50.00 60.94 60.72 65.71 65.61
RACE [19] 25.00 25.28 28.96 28.28 31.44
WinoGrande XL [35] 50.00 48.87 50.97 50.61 51.51
SciQ [17] 25.00 58.05 68.67 67.82 79.13
Lambada [29] 00.00 10.91 15.19 15.07 22.30

Note: All values represent accuracy (%). Best results shown in bold.

When to use Diffusion over AR?

AL(Ca U) — ['Diffusion(ca U) — LAR(Ca U)7

AL(Ceit, U) =0

AN

Solve for C

crit

When to use Diffusion over AR?

logyo(U)+7.052

Ccrit(U) = 10 0.460 — 2192 % 1015] U2.174

Corit(U) [72-174

Equation to predict the flop counts after which Diffusion beats AR
for any given unique data tokens (U)

When to use Diffusion over AR?

Heatmap of Predicted ALoss (Diffusion - AR)

Compute (FLOPs)

10 10°
Unique Data (Million)

- For any given number of unique data tokens (U), we can predict the exact number of flops

0.75

0.50

o
]
W

- 0.00

r—0.25

-—0.50

-0.75

-1.00

Predicted ALoss

Critical Compute (Flops)

o
]

(=1

—
(=1

[

2
(=]

<

(=]

(=

=]

oo

Linear Fit of Critical Compute

sl

il

sl

aaul

sl

*

Fitted line

Critical Compute Points
Diffusion Match AR

-
*('
”~
/.

(Critical compute point) after which Diffusion beats AR

10°
Unique Data (Million)

- We find the critical compute point has a log linear relationship

with the number of unique tokens

Conclusion

If you are compute bottlenecked —AR.

If you are data bottlenecked —> Diffusion.

In Robotics

Simulation Training —>AR.

Real world Training —> Ditfusion.

Twitter Peer Review

SimoRyu@ ©

@ @cloneofsimo

Everyone get your top 1% quality dataset and train 100 epochs right now

AR validation loss over training length

Diffusion validation loss over training length

3.8x10°1.\ Unique Scaling 5x10° === Unique Scaling
3.6 10" 21TM AR ~— 117M Diffusion
x
o R 425M AR —— 217M Diffusion
, 3410 . 724M AR - \ 425M Diffusion
@ 2 0
8 4x
,"_’ 32x 100 ‘E 10 \”\r N Repeating for 100 epochs is
2 o 2 g almost as good as new data
s 3x10 k-] "
g g 8 Ip.
S 28x10° =z e :ig'\":.
R 3 "° T -
26x10" 3% 10 W (L St sy
24x10° e
1B 108 1008 1T 10T 100T 1B 10B 100B 1T 10T 100T

Training Tokens

Training Tokens

Figure 5: Predicted validation loss for AR models (left) and Diffusion models (right) under compute-
optimal settings, extrapolated to larger compute budgets. Dotted lines indicate the hypothetical case
where repeated data is as valuable as new data. For AR, this holds up to about 4 epochs; for diffusion,
up to 100 epochs, showing that diffusion models are much more robust to data repetition.

2:40 AM - Jul 22,2025 - 124.7K Views

33 @ 475 [351

Qe

Lucas Beyer (bl16) & [SRS
@giffmana

AKA data augmentation. The numbers actually match my experience
exactly. This is something i think LLM people will slowly rediscover from
vision people.

Not sure how they can write up the whole paper and not even once think
of running the AR with augmentation or dropout?

@ Simo Ryu & ¢ @cloneofsimo - Jul 22
Everyone get your top 1% quality dataset and train 100 epochs right now

11:46 AM - Jul 22, 2025 - 129.5K Views

Q 21 134 Q 627 [513 2

Mihir Prabhudesai €& @mihirp98 - Jul 25 (A ooe
. We ran more experiments, with random token masking, and attention
Our rebuttal' dropout in autoregressive training. Consistent with our earlier ablations, we
find these augmentations still overfit quite quickly and are still quite behind
diffusion models trained for 500+ epochs. Diffusion

Show more
Impact of Attention Dropout on AR Impact of Token Masking on AR
—&— Defat —&— Default
—— 25%: —— 25% Tc
—8— 50% :: —— 50% Tc
75% ¢ —o— 75% Tc

S 100% T
\ k\ --- Diffusi(
\

‘ Lucas Beyer (bl16) € @giffmana - Jul 22

AKA data augmentation. The numbers actually match my experience
exactly. This is something i think LLM people will slowly rediscover from
vision people.

Not sure how they can write up the whole paper and not even once ...

Qs 017 Q 174 it 40K n oo

Our rebuttal:

Impact of Attention Dropout on AR Impact of Token Masking on AR
—— Default Dropout 46 —&— Default Setting
4.4 —8— 25% Attention Drop —&— 12.5% Token Masking
—0— 50% Attention Drop 441 —0— 25.0% Token Masking
2 47 75% Attention Drop L —— 37.5% Token Masking
S —=- Diffusion Best Loss é 40 50.0% Token Masking
= <]
2 . —-—-- Diffusion Best Loss
s 4.0 1 =
= < 4.0
s 54
3.8 1
3.8 1
3.6 1
3.6
1 2 3 4 5 T T T T T
Training Tokens 1e9 1 2 3 4 S

Training Tokens 1e9

Our rebuttal:

Mihir Prabhudesai 4 -
@mihirp98

We ran more experiments, with random token masking, and attention
dropout in autoregressive training. Consistent with our earlier ablations,
we find these augmentations still overfit quite quickly and are still quite
behind diffusion models trained for 500+ epochs. Diffusion models
randomly factorize the joint, which enables them to generate tokens in
random orders, which we think can’t simply be recreated by just random
input masking while still having the next token prediction objective. We
have updated the arxiv with these new results.

We had run some of these experiments before release, however we
didn’t report them in the paper as they didn’t really help us explain the
data efficiency of diffusion models (should have included!). We would
also like to point out that prior works have also found some of these
augmentations to not help much, e.g., x.com/pratyushmaini/.... They
find rephrasing the text to mainly be the augmentation that helps with
AR training, however we don't see a reason on why even diffusion
models cannot benefit out of this augmentation.

Lucas replied to our rebuttal:

Lucas Beyer (bl16) & A -
@giffmana

Interesting, thanks!
So this is your next hypothesis then, right?

> Diffusion models randomly factorize the joint, which enables them to
generate tokens in random orders, which we think can’t simply be
recreated by just random input masking while still having the next token
prediction objective

The ideal next step is to design some experiment(s) that can support or
disprove this hypothesis.

| maybe have one idea for one, though it's not perfect. You could at the
start of training sample N permutations, and during training use one of
them at random for each sequence. N=1 would just be regular AR
training. N=2 would be training a mixed forward and backwards AR LM.
And then you can continue increasing N and make a plot. | guess one
question would be whether at eval time to also randomize which
permutation to use, or ensemble them.

This experiment would add your hypothesis to the AR model, so if your
hypothesis for the reason is correct performance should improve at least
a bit.

I've actually seen something close to this with AR models before: i had a
severely overfitting (many epochs) AR model on task A, theniadd a
completely unrelated task B and see performance on A increasing,
section 5.4 and especially 5.4.4 in arxiv.org/pdf/2303.17376. So I'm
genuinely curious about this experiment

Another way would be to try an experiment that removes the hypothesis
from the diffusion model and see if it deteriorates, though i don't have a
good idea without making it ridiculous.

We tried this experiment out:

e Mihir Prabhudesai & @mihirp98 - Aug 6

We ran more experiments to better understand “why” diffusion models
do better in data-constrained settings than autoregressive. Our
findings support the hypothesis that diffusion models benefit from
learning over multiple token orderings, which contributes to their
robustness and x.com/giffmana/statu...

Show more

Impact of N-1 Random Orderings on Autoregressive(AR)

50+
—&— Standard AR
4.8 —&— AR with N=2
—&— AR with N=4
Ho" —e— AR with N=16
4.4 -== Diffusion Best Loss

Validation Loss

Tokens (B)

We tried this experiment out:

Mihir Prabhudesai & A -
@mihirp98

We ran more experiments to better understand “why” diffusion models
do better in data-constrained settings than autoregressive. Our findings
support the hypothesis that diffusion models benefit from learning over
multiple token orderings, which contributes to their robustness and
reduced overfitting.

To test this, we trained autoregressive (AR) models with varying numbers
of token orderings: N=1 corresponds to the standard left-to-right
ordering, while N=k includes the left-to-right order plus k-1 additional
random permutations. As N increases, we observe that AR models
become more data-efficient, exhibiting improved validation loss and
reduced overfitting.

All models were trained for 100 epochs, and were evaluated using the
standard left-to-right factorization. We also experimented with related
approaches, such as RAR and 0-GPT, and observed consistent trends --
introducing more random factorizations led to better generalization and
less overfitting.

We have updated our arXiv submission with these new results. We thank
@giffmana and @Youliacheng for suggesting these experiments.

Original paper post - x.com/mihirp98/statu...

Impact of N-1 Random Orderings on Autoregressive(AR)

—&— Standard AR

4.8 —8— AR with N=2

—&— AR with N=4

—8— AR with N=16

4.4 === Diffusion Best Loss

4.6 1

Validation Loss

Tokens (B)

Token ordering explains diffusion’s data etficiency.

Impact of N-1 Random Orderings on Autoregressive(AR)

5.0
—®— Standard AR
4.8 —&— AR with N=2
—®— AR with N=4
) 4.6 - —®— AR with N=16
3 44 —== Diffusion Best Loss
o
.8
=
=
S

20 40 60 80 100
Training Epochs

- Potentially could allow one to interpolate between data & compute efficiency.

A concurrent work (came after 3 weeks of our release),
also validated our core findings:

1B Model, 1B Unique Tokens, 96 Epochs

50 A 31
g =7 // v]
] %)
X . e 29.
340— <
2 3 281
n
=35 = 271
3 =
T 30 26
25
25 T T T T T T T T
0 20 40 60 80 0 20 40 60 80
Epochs Epochs
8B Model, 1B Unique Tokens, 96 Epochs
55 331
32 A
Y 501
< Y 311
o 45 < 30
S =)
3 40+ : =1 291
()] a
S , Z
= 351 by
] 27 1
T 30
26
2] | | . | 25 1 , . , .
0 20 40 60 80 0 20 40 60 80
Epochs Epochs
- Autoregressive = Diffusion

Jinjie etal. “Diffusion Language Models are Super Data Learners”

