
Diffusion Language Models are Super Data Learners

Presented by: Jinjie Ni

National University of Singapore



Limited Data, Infinite Compute

Exponential growth of compute



Limited Data, Infinite Compute

Linear growth of web data



Limited Data, Infinite Compute

Limited domain-specific data



Limited Data, Infinite Compute

Autoregressive LLMs diminish or overfit after a few epochs



Why Autoregressive Receives its Popularity

Despite their quick overfitting, the state-of-the-art 
auto-regressive models are popular due to:

> Optimal utilization of modern GPU architectures.

> Natural language can be modeled in the left-to-right 
direction with low loss.



R1: Optimal utilization of modern GPU architectures

> Decoder-only transformer

> Causal masking

> Teacher-forcing (training)

> KV cache, Continuous batching, etc. (inference)

Algorithmically, the above combination maximizes the 
training-time signal-to-FLOPs ratio and test-time 
efficiency.



High Training-Time Signal-to-FLOPs Ratio

x x

x label

model prednormal tokens

m <mask>

b c da

a m c m

b c d

LM

label
output

input

a

m

e
e

> Only masked positions receive signals.

Masked Modeling



High Training-Time Signal-to-FLOPs Ratio

x x x labelmodel prednormal tokens

a b c d

LM

label
output

input e

e
e

f
f

> Prefix does not receive signals.

Encoder-decoder



High Training-Time Signal-to-FLOPs Ratio

x x x labelmodel prednormal tokens

b d

a b c d

b d

LM

label
output

input e

e
e

c
c

f
f

> Full sequence receives signals.

Decoder



High Inference Efficiency

Causality enables KV cache

Inference FLOPs grow linearly!



High Inference Efficiency

Token-by-token generation enables fine-grained 
batching and memory strategies. 

Paged Attention

Continuous Batching



R2: Web Text Can be Modeled Well in Left-to-Right

(a) Convergence speed with 
different fixed prediction orders: 
left-to-right, fixed random, and 
fixed block-wise random. 

(b) Impact of adding 10% left-to-
right (L2R) data to AO-GPT training 
on its L2R and any-order loss.

Why?

> Most text data are generated by humans, 
while humans are RNNs.



Left-to-right Modeling is not Optimal

Not all web text are dominated by left-to-right. 

> Code
> Biology data
> Database entries
> Symbolic notations
> etc.

Even general web data can also be modeled in 
other directions, evidence:



(Masked) Diffusion Language Models

x x

x label

model prednormal tokens

m <mask>

b c da

a m c m

b c d

LM

label
output

input

a

m

e
e

Encoder



Diffusion Language Models are Super Data Learners

Overall Setup:

> Dense 1B/8B models trained on a fixed 96B-token budget, varying 
unique tokens from 0.5B to 96B. 
> A 1B DLM was also trained for 480 epochs on 1B unique tokens.



Diffusion Language Models are Super Data Learners

With fixed data budget, DLM clearly crossover the AR counterparts at 
some point by repeating the data.



Diffusion Language Models are Super Data Learners

DLMs exhibit >3x data potential compared to autoregressive models.



Diffusion Language Models are Super Data Learners

> Increasing the model size from 1B to 8B further unleashes the data 
potential
> While AR doesn’t benefit from a larger model size under data 
constraint.



Diffusion Language Models are Super Data Learners

> DLMs show negligible performance degradation when drastically 
reducing unique data from 96B to 0.5B tokens.

> Its data potential is higher than we imagine.



Diffusion Language Models are Super Data Learners

> The crossover point on different evals are similar.

> More unique tokens, later it crossovers.

?

?



Diffusion Language Models are Super Data Learners

> Under compute-constrained settings, AR fits the data faster;

> Under data-constrained settings, DLM achieves a higher 
performance.



Diffusion Language Models are Super Data Learners

> On only 1B unique tokens, it achieves ~56% accuracy on HellaSwag
and ~33% on MMLU, significantly outperforming AR’s ~41% and 
~29%, respectively

> Even under such extreme repetition, performance did not saturate, 
suggesting that DLMs can extract substantially more signal from a 
fixed 1B-token corpus



High Validation Loss ≠ Degraded Intelligence

Is val loss a good metric to monitor “overfitting” performance?

> When models get “overfit” on validation subsets, their performance 
on down-stream evaluations doesn’t necessarily drop, and may keep 
improving till the end of training.

> AR is measuring exact negative likelihood, while DLM optimizes an 
upper bound.



High Validation Loss ≠ Degraded Intelligence

Why?

Validation loss computes an absolute cross-entropy loss (NLL); multi-
choice evals are decided by relative cross-entropy losses (△NLL).



High Validation Loss ≠ Degraded Intelligence

> NLL: Negative log-likelihood on the ground-truth and other options 
of multiple-choice evals (NLLs on other options are averaged).

> △NLL: The differences between the NLLs on ground-truth and 
other options, which keeps growing.



When Does Diffusion Language Models Saturate?



Diffusion Language Models also Overfit the Data

> Overfitting eventually emerges after prolonged training.

> Larger unique data size delay overfitting, while larger models
accelerate its onset.



What is the Real Advantage of Diffusion Language Models?

Three angles to interpret:

> Reduced Inductive Bias via Bidirectional Modeling. 

> Super-Density: more training and test time FLOPs per task.

> Data augmentation via injecting noise.



Reduced Inductive Bias via Any-Order Modeling

Not all web text are dominated by left-to-right. 

> Code
> Biology data
> Database entries
> Symbolic notations
> etc.

Even general web data can also be modeled in 
other directions, evidence:

+

=

Any-Order Modeling



Super-Density: More Training & Test Time FLOPs Per Task

> Two orders of magnitude (>100×) more training FLOPs than AR to 
achieve full data potential.

> Sequence length 16 -> 4096, inference FLOPs 16× -> 4700× of AR.

> Equals to AR’s inference FLOPs when diffusion sampling steps = 1.



Data Augmentation via Injecting Noise

> When we do multi-epoch training, we are augmenting the data by 
injecting different noise into each data point.

> A training sequence of length N can be corrupted into 2N data 
samples at most.

> A 1B dataset of 2048 sequence lengths will be expanded into 
488281.25 × 22048 ~= 1.6×102119 TB tokens at most, which is more than 
enough to fully fit the data.



Insights Behind the Data Augmentation

> The objective function explicitly requires each data point in the pre-
training dataset to be corrupted at multiple masking ratios and
combinations for more effective training. 

> The more Monte Carlo sampling, the more precise the expectation.

> Therefore, ”data augmentation” is just approaching the true 
expectation. The true higher limit arises from the bi-directional
modeling and the super density.



Efficient Serving of DLMs (batch-size = 1)



Efficient Serving of DLMs (batch-size = 1)

Suppose we are doing tensor production of shape [4096, 4096] with [4096, N]:

To fully utilize the 132 SMs of an H100 GPU without getting bounded by 
throughput, we got N ~= 128 at most to not drastically increasing the latency. 

First of all, under this condition, it will be tricky for AR to use tensor core 
(requiring bsz >= 16), which makes it much slower. 

However, we can suppose it can use the tensor core to simplify the problem.

In this condition, we assume latency(N=1) ~= latency(N=128), roughly.



Efficient Serving of DLMs (batch-size = 1)

Suppose we are generating 512 tokens, each with 4096 dimension:

AR requires 512 steps, each step forwarding 1 tensor;
DLM requires ≤ 512 steps, each step forwarding 512 / n_step tensors.

To achieve comparable / lower latency than AR, we can either:

> Forwarding one block at a time, blk_size < 128, sampling 512 times (block 
diffusion with kv cache); 

> Forwarding 512 tokens per step (consume 4x time), predicting > 4 tokens 
per step (multi-token prediction); 

> It could be much faster as we are saving more time on moving the data 
between HBM and SMs;

> Combining them.



Efficient Serving of DLMs (batch-size > 1)

It’s now throughput bound, i.e., throughput scales linearly with 
input batch size.

Suppose we are generating 512 tokens, to achieve comparable / 
higher throughput (toks/s) than AR, we can either:

> Use block diffusion with kv cache, block size = 1.

The third strategy is more acceptable.

On more memory bounded devices, DLM throughput > AR.

> Generate 512 tokens in one step.

> Use block diffusion and multi-token prediction, generate 512
tokens in 512/blk_size steps.



Why diffusion language models?

1. Higher data potential, i.e., given the same amount of data, it 
achieves a higher performance via repeating on it.

2. More training and test-time scaling.

3. Much lower inference latency than AR.

4. Comparable or higher throughput compared with AR.


