
EvaByte: Efficient Byte-level 
Language Models at Scale

Lin Zheng, Xueliang Zhao, Guangtao Wang, Chen Wu, David Dong, 
Angela Wang, Mingran Wang, Yun Du, Haige Bo, Amol Sharma, Bo Li, 

Kejie Zhang, Changran Hu, Urmish Thakker, Lingpeng Kong

Blog post:                 https://hkunlp.github.io/blog/2025/evabyte
Huggingface:           https://huggingface.co/EvaByte
Codebase:                https://github.com/OpenEvaByte/evabyte

https://hkunlp.github.io/blog/2025/evabyte
https://huggingface.co/EvaByte
https://github.com/OpenEvaByte/evabyte


EvaByte

• Highly competitive perf. with 5x less training data



Why Avoid Tokenization?

• Tokenizers are externally built and detached from training

• Make LMs not end-to-end and fragile
• Glitch tokens, prompt boundary issues, …

Transformer

TokenizationFrozen



Challenges

• Byte sequences are much longer than tokenized counterparts
• ~4x longer in our text data mix

• >64x longer for images, audio, …

• Much higher training and inference cost



Approach

• Efficient byte modeling with streamlined arch-side changes
• Multibyte Prediction

• Efficient attention with EVA



Multibyte Prediction

• Next several bytes are predicted jointly instead of one
• Losses from different heads are simply summed together

• Almost no training overhead with 8 heads due to small vocab size (320)

• We tried power-decayed weighting but observed no perf. diff.

[1] Stern, Mitchell, et al. Blockwise parallel decoding for deep autoregressive models. NeuIPS 2018.
[2] Qi, Weizhen, et al. Prophetnet: Predicting future n-gram for sequence-to-sequence pre-training. EMNLP 2020.
[3] Cai, Tianle, et al. Medusa: Simple llm inference acceleration framework with multiple decoding heads. ICML 2024.
[4] Gloeckle, Fabian, et al. Better & faster large language models via multi-token prediction. ICML 2024.



Multibyte Prediction

• All prediction heads are learned quite effectively

• Downstream choice-task performance stable across heads



Efficient Attention

• Multibyte pred. alone is not enough to speed up byte models
• Attention becomes the bottleneck as the context fills up rapidly with 

byte streams

• Solution: EVA -- a simple yet efficient approx. to attention
• A simple variant of linearized attention

[1] Zheng, Lin, et al. "Efficient attention via control variates." ICLR 2023 Oral.



Revisiting Linearized Attention

• Standard attention runs in quadratic runtime

• Approximation: linearizing the exponential dot product

• Observation: linearized attention compresses all KV information to 
a single global memory state



EVA

• EVA: global memory distributed into local slots

Chunking

Multiply-by-1

Double approx.

Rearranging

“Attention" per chunk“Attention score" for each chunk



EVA

• Interpolation between standard and linearized attention



EVA

• Expands the design space of linearized attention

• Easier to improve local memory than global

• Complementary to research in better organizing memory states
• Gated RFA, GLA, Gated DeltaNet, TTT, Titans, HGRNs, RWKVs, Mambas, …

Global Memory

Local Memory

Local Memory

Local Memory

Local Memory

[1] Peng, Hao, et al. "Random feature attention.“ ICLR 2021.
[2] Yang, Songlin, et al. "Gated linear attention transformers with hardware-efficient training.“ ICML 2024.
[3] Dao, Tri, and Albert Gu. "Transformers are ssms: Generalized models and efficient algorithms through structured 
state space duality.“ ICML 2024.
[4] Yang, Songlin et al. “Gated Delta Networks: Improving Mamba2 with Delta Rule.” ICLR 2025.
[5] Yang, Songlin et al. “Parallelizing Linear Transformers with the Delta Rule over Sequence Length.” NeurIPS 2024.
[6] Qin, Zhen et al. “Hierarchically Gated Recurrent Neural Network for Sequence Modeling.” NeurIPS 2023.
[7] Sun, Yu et al. “Learning to (Learn at Test Time): RNNs with Expressive Hidden States.” ArXiv: 2407.04620.
[8] Behrouz, Ali et al. “Titans: Learning to Memorize at Test Time.” ArXiv: 2501.00663.
[9] Peng, Bo, et al. "Rwkv: Reinventing rnns for the transformer era." arXiv: 2305.13048.



EVA

• Chunking decides approx. fidelity-efficiency trade off

• Hybrid design: fixed-size distant chunks + singleton neighbors

• Aka chunk-wise linearized attention + block attention

• Connection to Scatterbrain, Infini-attention, LoLCATs, LESS, NSA, …

Current query pos.

[1] Chen, Beidi, et al. "Scatterbrain: Unifying sparse and low-rank attention." NeurIPS 2021.
[2] Munkhdalai, Tsendsuren et al. "Leave no context behind: Efficient infinite context transformers with infini-attention." arXiv:2404.07143.
[3] Zhang, Michael, et al. "LoLCATs: On Low-Rank Linearizing of Large Language Models.“ ICLR 2025.
[4] Dong, Harry, et al. "Get more with less: Synthesizing recurrence with kv cache compression for efficient llm inference.“ ICML 2024.
[5] Yuan, Jingyang, et al. "Native sparse attention: Hardware-aligned and natively trainable sparse attention." arXiv:2502.11089.



EVA

• 𝜓(⋅) controls interpolation between linearized and standard attention

• Double linearization with 𝜙(⋅) and ෨𝜙(⋅)
• Efficient but poor interpolation:

• 𝐶 = 1 : linearized attention with 𝜙(⋅)

• 𝐶 = 𝑀: linearized attention with ෨𝜙(⋅)

• Heuristic used in EVA
• Efficient and effective interpolation:

• 𝐶 = 1 : linearized attention with 𝜙(⋅)
• 𝐶 = 𝑀: exact full attention

• We found this produced better perf.

Exact computation but quadratic



EVA

• Parameterizing 𝜙(⋅) as in Performer

• We use scalar features (𝑆 = 1) with degenerate form
• Very similar perf. to 𝑆 > 1 but simpler implementation

• Learnable weights stabilize training

[1] Choromanski, Krzysztof et al. “Rethinking Attention with Performers.” ICLR 2021



EVA

• Implementation
• Natively chunking-based so friendly to FA-style tiling and sharding

In EvaByte
Sequence length    𝑀 = 32768
# Singleton groups 𝑆 = 2048
Fixed chunk size     𝑃 = 16



EVA

Compressive Decoding

• Behaves like standard attention

• Except that every 𝑆 bytes
• Pop most recent-𝑆 bytes from cache

• Transform them into local memory slots

• Append back to the cache

Current query pos.

In EvaByte
Sequence length    𝑀 = 32768
# Singleton groups 𝑆 = 2048
Fixed chunk size     𝑃 = 16



EvaByte: Scalable Byte Modeling

• Byte modeling with streamlined arch.
• No tokenization
• Efficient attention – EVA
• Multibyte prediction

• Scaling
• 6.5B params + 32k context length + 1.5T bytes (~0.5T tokens)  

• Strong performance
• Faster decoding
• Great data efficiency
• No tokenization quirks
• Native support to multimodal data types



Pretraining - Data

• Staged pretraining on SambaNova’s hardware (SN-30 RDUs)
• Phase 1 over 700B (LR cosine decay from 3e-4 to 2e-4): 

• 30% Fineweb-edu
• 40% Dolma v1.7
• 30% Stack v2

• Phase 2 over 520B (LR cosine decay from 2e-4 to 1e-4): 
• 68% DCLM 
• 15% Dolma v1.7
• 15% (Stack v2 + Opencoder)
• 2% instruction data (FLAN & Open-math-instruct2)

• Phase 3 over 100B + 200B (LR linearly decay from 1e-4 to 0):
• Two independent annealing runs and model soup
• 200B: 75% DCLM, 16% (Stack v2 + Opencoder), 9% instruction data
• 100B: 50% DCLM, 25% (Stack v2 + Opencoder), 25% instruction data



Pretraining - Instability

• Embedding collapse
• Temporary and weird typos

• Self-resolved after a few training 
steps

• Loss spikes
• We’ve made hyper-param. 

changes mid-flight

• Most useful tips we found:
• Lower adam_eps to 1e-12

• Skipping batches

• Periodically resetting optimizer states



Results – Speed Up

• Both multibyte pred. 
and EVA speed up byte 
models

• 2x faster decoding than 
tokenizer-based LMs

(speed measured through native HF generate interface with FA2)



Results - Performance
0.5T tokens = 1.5T bytes

Byte models
• More gradient descent steps with the 

same amount of data



Results – Ablation

• EVA achieves same task perf. as standard attention

• Byte models catch up with tokenizer-based LMs 
• With 3x less data

• Or much better with the same amount of data

Tokenized models Byte models



Results – Intermediate Perf

• Downstream task perf. 
improves steadily throughout 
pretraining
• No signs of plateauing yet



Results – Intermediate Perf

• Also outperforms open-sourced intermediate checkpoints 
trained on the same amount of data



Results - SFT

• Byte models also scale with SFT
• Our final mix uses TULU v3 and filtered Opencoder



Results – Tokenization Quirk Fix

• Tokenization issues: prompt boundary problem



Results - Robustness

• But byte models still struggle with tasks such as character 
counting, string processing, etc.

• Likely not a problem of tokenization but more about 
reasoning or representation issues
• Models need deeper semantic understanding to retrieve the correct 

information from context

User: 
What is the third letter in the string “hkunlp"?

EvaByte-SFT:
The third letter in "hkunlp" is “n".                         



Results - Multimodality

• Byte models are flexibly extendable to various data types

• Just as text, images can take any byte representation with 
some encoding

• Due to 32KB context length limit, we use JPEG
• 256 x 256 image ~ 10K bytes

• This choice is suboptimal: JPEG is lossy and optimized for human 
perception not for machines



Results - Multimodality

• Directly feed interleaved 
image + text bytes
• without any arch. changes

• After finetuning 20k steps on 
image-caption pairs
• Vaguely reconstructs images

• Captions with reasonable detail



Limitations & Future Work

Our tweaks to the Transformer so far:
• Input

• tokenized -> byte-level

• Output
• Next-token -> multi-byte prediction

• Attention
• Standard attention -> EVA

• FFN 
• Remains the same
• Remains the bottleneck esp. with 

efficient attention modules
• Improving FFNs’ efficiency?

[1] Geva, Mor, et al. "Transformer feed-forward layers are key-value memories." EMNLP 2021.



Limitations & Future Work

• Data representation: the model can take any byte stream 
• Many valid choices to represent the same piece of data

• Modeling over either raw bytes or compressed encodings

• Model architecture
• Toward more distributed representation learning

• Bytes look like a suitable testbed for efficient sequence model 
research

Hidden dim

Sequence length

Tokenized model Byte model



Thank you!


	Slide 1: EvaByte: Efficient Byte-level Language Models at Scale
	Slide 2: EvaByte
	Slide 3: Why Avoid Tokenization?
	Slide 4: Challenges
	Slide 5: Approach
	Slide 6: Multibyte Prediction
	Slide 7: Multibyte Prediction
	Slide 8: Efficient Attention
	Slide 9: Revisiting Linearized Attention
	Slide 10: EVA
	Slide 11: EVA
	Slide 12: EVA
	Slide 13: EVA
	Slide 14: EVA
	Slide 15: EVA
	Slide 16: EVA
	Slide 17: EVA
	Slide 18: EvaByte: Scalable Byte Modeling
	Slide 19: Pretraining - Data
	Slide 20: Pretraining - Instability
	Slide 21: Results – Speed Up
	Slide 22: Results - Performance
	Slide 23: Results – Ablation
	Slide 24: Results – Intermediate Perf
	Slide 25: Results – Intermediate Perf
	Slide 26: Results - SFT
	Slide 27: Results – Tokenization Quirk Fix
	Slide 28: Results - Robustness
	Slide 29: Results - Multimodality
	Slide 30: Results - Multimodality
	Slide 31: Limitations & Future Work
	Slide 32: Limitations & Future Work
	Slide 33: Thank you!

