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EvaByte

• Highly competitive perf. with 5x less training data



Why Avoid Tokenization?

• Tokenizers are externally built and detached from training

• Make LMs not end-to-end and fragile
• Glitch tokens, prompt boundary issues, …

Transformer

TokenizationFrozen



Challenges

• Byte sequences are much longer than tokenized counterparts
• ~4x longer in our text data mix

• >64x longer for images, audio, …

• Much higher training and inference cost



Approach

• Efficient byte modeling with streamlined arch-side changes
• Multibyte Prediction

• Efficient attention with EVA



Multibyte Prediction

• Next several bytes are predicted jointly instead of one
• Losses from different heads are simply summed together

• Almost no training overhead with 8 heads due to small vocab size (320)

• We tried power-decayed weighting but observed no perf. diff.

[1] Stern, Mitchell, et al. Blockwise parallel decoding for deep autoregressive models. NeuIPS 2018.
[2] Qi, Weizhen, et al. Prophetnet: Predicting future n-gram for sequence-to-sequence pre-training. EMNLP 2020.
[3] Cai, Tianle, et al. Medusa: Simple llm inference acceleration framework with multiple decoding heads. ICML 2024.
[4] Gloeckle, Fabian, et al. Better & faster large language models via multi-token prediction. ICML 2024.



Multibyte Prediction

• All prediction heads are learned quite effectively

• Downstream choice-task performance stable across heads



Efficient Attention

• Multibyte pred. alone is not enough to speed up byte models
• Attention becomes the bottleneck as the context fills up rapidly with 

byte streams

• Solution: EVA -- a simple yet efficient approx. to attention
• A simple variant of linearized attention

[1] Zheng, Lin, et al. "Efficient attention via control variates." ICLR 2023 Oral.



Revisiting Linearized Attention

• Standard attention runs in quadratic runtime

• Approximation: linearizing the exponential dot product

• Observation: linearized attention compresses all KV information to 
a single global memory state



EVA

• EVA: global memory distributed into local slots

Chunking

Multiply-by-1

Double approx.

Rearranging

“Attention" per chunk“Attention score" for each chunk



EVA

• Interpolation between standard and linearized attention



EVA

• Expands the design space of linearized attention

• Easier to improve local memory than global

• Complementary to research in better organizing memory states
• Gated RFA, GLA, Gated DeltaNet, TTT, Titans, HGRNs, RWKVs, Mambas, …

Global Memory

Local Memory

Local Memory

Local Memory

Local Memory

[1] Peng, Hao, et al. "Random feature attention.“ ICLR 2021.
[2] Yang, Songlin, et al. "Gated linear attention transformers with hardware-efficient training.“ ICML 2024.
[3] Dao, Tri, and Albert Gu. "Transformers are ssms: Generalized models and efficient algorithms through structured 
state space duality.“ ICML 2024.
[4] Yang, Songlin et al. “Gated Delta Networks: Improving Mamba2 with Delta Rule.” ICLR 2025.
[5] Yang, Songlin et al. “Parallelizing Linear Transformers with the Delta Rule over Sequence Length.” NeurIPS 2024.
[6] Qin, Zhen et al. “Hierarchically Gated Recurrent Neural Network for Sequence Modeling.” NeurIPS 2023.
[7] Sun, Yu et al. “Learning to (Learn at Test Time): RNNs with Expressive Hidden States.” ArXiv: 2407.04620.
[8] Behrouz, Ali et al. “Titans: Learning to Memorize at Test Time.” ArXiv: 2501.00663.
[9] Peng, Bo, et al. "Rwkv: Reinventing rnns for the transformer era." arXiv: 2305.13048.



EVA

• Chunking decides approx. fidelity-efficiency trade off

• Hybrid design: fixed-size distant chunks + singleton neighbors

• Aka chunk-wise linearized attention + block attention

• Connection to Scatterbrain, Infini-attention, LoLCATs, LESS, NSA, …

Current query pos.

[1] Chen, Beidi, et al. "Scatterbrain: Unifying sparse and low-rank attention." NeurIPS 2021.
[2] Munkhdalai, Tsendsuren et al. "Leave no context behind: Efficient infinite context transformers with infini-attention." arXiv:2404.07143.
[3] Zhang, Michael, et al. "LoLCATs: On Low-Rank Linearizing of Large Language Models.“ ICLR 2025.
[4] Dong, Harry, et al. "Get more with less: Synthesizing recurrence with kv cache compression for efficient llm inference.“ ICML 2024.
[5] Yuan, Jingyang, et al. "Native sparse attention: Hardware-aligned and natively trainable sparse attention." arXiv:2502.11089.



EVA

• 𝜓(⋅) controls interpolation between linearized and standard attention

• Double linearization with 𝜙(⋅) and ෨𝜙(⋅)
• Efficient but poor interpolation:

• 𝐶 = 1 : linearized attention with 𝜙(⋅)

• 𝐶 = 𝑀: linearized attention with ෨𝜙(⋅)

• Heuristic used in EVA
• Efficient and effective interpolation:

• 𝐶 = 1 : linearized attention with 𝜙(⋅)
• 𝐶 = 𝑀: exact full attention

• We found this produced better perf.

Exact computation but quadratic



EVA

• Parameterizing 𝜙(⋅) as in Performer

• We use scalar features (𝑆 = 1) with degenerate form
• Very similar perf. to 𝑆 > 1 but simpler implementation

• Learnable weights stabilize training

[1] Choromanski, Krzysztof et al. “Rethinking Attention with Performers.” ICLR 2021



EVA

• Implementation
• Natively chunking-based so friendly to FA-style tiling and sharding

In EvaByte
Sequence length    𝑀 = 32768
# Singleton groups 𝑆 = 2048
Fixed chunk size     𝑃 = 16



EVA

Compressive Decoding

• Behaves like standard attention

• Except that every 𝑆 bytes
• Pop most recent-𝑆 bytes from cache

• Transform them into local memory slots

• Append back to the cache

Current query pos.

In EvaByte
Sequence length    𝑀 = 32768
# Singleton groups 𝑆 = 2048
Fixed chunk size     𝑃 = 16



EvaByte: Scalable Byte Modeling

• Byte modeling with streamlined arch.
• No tokenization
• Efficient attention – EVA
• Multibyte prediction

• Scaling
• 6.5B params + 32k context length + 1.5T bytes (~0.5T tokens)  

• Strong performance
• Faster decoding
• Great data efficiency
• No tokenization quirks
• Native support to multimodal data types



Pretraining - Data

• Staged pretraining on SambaNova’s hardware (SN-30 RDUs)
• Phase 1 over 700B (LR cosine decay from 3e-4 to 2e-4): 

• 30% Fineweb-edu
• 40% Dolma v1.7
• 30% Stack v2

• Phase 2 over 520B (LR cosine decay from 2e-4 to 1e-4): 
• 68% DCLM 
• 15% Dolma v1.7
• 15% (Stack v2 + Opencoder)
• 2% instruction data (FLAN & Open-math-instruct2)

• Phase 3 over 100B + 200B (LR linearly decay from 1e-4 to 0):
• Two independent annealing runs and model soup
• 200B: 75% DCLM, 16% (Stack v2 + Opencoder), 9% instruction data
• 100B: 50% DCLM, 25% (Stack v2 + Opencoder), 25% instruction data



Pretraining - Instability

• Embedding collapse
• Temporary and weird typos

• Self-resolved after a few training 
steps

• Loss spikes
• We’ve made hyper-param. 

changes mid-flight

• Most useful tips we found:
• Lower adam_eps to 1e-12

• Skipping batches

• Periodically resetting optimizer states



Results – Speed Up

• Both multibyte pred. 
and EVA speed up byte 
models

• 2x faster decoding than 
tokenizer-based LMs

(speed measured through native HF generate interface with FA2)



Results - Performance
0.5T tokens = 1.5T bytes

Byte models
• More gradient descent steps with the 

same amount of data



Results – Ablation

• EVA achieves same task perf. as standard attention

• Byte models catch up with tokenizer-based LMs 
• With 3x less data

• Or much better with the same amount of data

Tokenized models Byte models



Results – Intermediate Perf

• Downstream task perf. 
improves steadily throughout 
pretraining
• No signs of plateauing yet



Results – Intermediate Perf

• Also outperforms open-sourced intermediate checkpoints 
trained on the same amount of data



Results - SFT

• Byte models also scale with SFT
• Our final mix uses TULU v3 and filtered Opencoder



Results – Tokenization Quirk Fix

• Tokenization issues: prompt boundary problem



Results - Robustness

• But byte models still struggle with tasks such as character 
counting, string processing, etc.

• Likely not a problem of tokenization but more about 
reasoning or representation issues
• Models need deeper semantic understanding to retrieve the correct 

information from context

User: 
What is the third letter in the string “hkunlp"?

EvaByte-SFT:
The third letter in "hkunlp" is “n".                         



Results - Multimodality

• Byte models are flexibly extendable to various data types

• Just as text, images can take any byte representation with 
some encoding

• Due to 32KB context length limit, we use JPEG
• 256 x 256 image ~ 10K bytes

• This choice is suboptimal: JPEG is lossy and optimized for human 
perception not for machines



Results - Multimodality

• Directly feed interleaved 
image + text bytes
• without any arch. changes

• After finetuning 20k steps on 
image-caption pairs
• Vaguely reconstructs images

• Captions with reasonable detail



Limitations & Future Work

Our tweaks to the Transformer so far:
• Input

• tokenized -> byte-level

• Output
• Next-token -> multi-byte prediction

• Attention
• Standard attention -> EVA

• FFN 
• Remains the same
• Remains the bottleneck esp. with 

efficient attention modules
• Improving FFNs’ efficiency?

[1] Geva, Mor, et al. "Transformer feed-forward layers are key-value memories." EMNLP 2021.



Limitations & Future Work

• Data representation: the model can take any byte stream 
• Many valid choices to represent the same piece of data

• Modeling over either raw bytes or compressed encodings

• Model architecture
• Toward more distributed representation learning

• Bytes look like a suitable testbed for efficient sequence model 
research

Hidden dim

Sequence length

Tokenized model Byte model



Thank you!
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