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Overview

• Motivation 

• Forgetting Attention and Forgetting Transformer (FoX) 

• FlashAttention-based Implementation 

• Results and analyses 

• Future directions
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Motivation
• Forget gates are ubiquitous in recurrent sequence models (e.g., linear attention) 

• LSTM, Gated RFA, GLA, Mamba-2, HGRN2, RWKV series, xLSTM, Gated DeltaNet… 

• Forget gates are known to be crucial for performance  

• See Greff et al., 2016; Van Der Westhuizen & Lasenby, 2018; Peng et al., 2021; Yang et 
al., 2023; Gu & Dao, 2023 

• Softmax attention and linear attention are very similar in form. 

• Softmax attention can be seen as linear attention with an infinite dimensional state 

• , where  maps to an infinite dimensional space 

• So let’s try adding a forget gate to softmax attention!

exp(q⊤k) = ⟨ϕ(q), ϕ(k)⟩ ϕ
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Why are Forget Gates Useful?

• Every model has limited modeling capabilities: 

• For recurrent models: limited by #params and state size 

• For Transformers: limited #params 

• Forgetting makes things easier to model (less things to process) 

• NOTE: there are many heads. There could still be heads that DO NOT forget
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Intuition

• Forget gates  data-dependent decay of input-output dependencies 

• Consider a minimal RNN mapping  to  (everything in ) 

• , where  

•  

• Easy to show: , where 

⇔

(xi)L
i=1 (oi)L

i=1 ℝd

ht = ftht−1 + xt ft ∈ (0,1)

ot = ht

oi =
j

∑
i=1

Fijxj Fij =
i

∏
l=j+1

fl

Takeaway: models without (explicit) recurrence can also have a forget gate
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• Softmax attention with a forget gate 

•  

•  

•  

•

qi, ki, vi = Wqxi, Wkxi, Wvxi ∈ ℝd

fi = σ(wf xi + bf) ∈ ℝ

Fij =
i

∏
l=j+1

fl

oi =
∑i

j=1 Fij exp(q⊤
i kj)vj

∑i
j=1 Fij exp(q⊤

i kj)

Forgetting Attention

• Logit bias form 

•  

• where  

• Matrix form: 

•  

•

oi =
∑i

j=1 exp(q⊤
i kj + dij)vj

∑i
j=1 exp(q⊤

i kj + dij)

dij = log Fij =
i

∑
l=j+1

log fl

D = log F

O = softmax(QK⊤ + D)V
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Comments

•  logit scaling is omitted in the previous slide; in practice we always use it 

• For MHA, one forget gate per head:  

• Sharing a forget gate across heads performs poorly. 

• Forget gates are scalar-valued. So the additional computation and parameters are negligible. 

• No need for RoPE, so 

• Convenient for long context fine-tuning: no need to adjust  (e.g. in YaRN) 

• Convenient for non-standard attention such as MLA and NSA 

• It is elegant :) 

• Hyperparameter-free, unlike RoPE or ALiBi

1

d

f (h)
t = σ(w(h)

f xt + b(h)
f )

θ
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Connections to Prior/Concurrent Work

• Connection to linear attention models with forget gates (e.g., GLA, Mamba-2) 

• Connection to Attention with Linear Bias (ALiBi) 

• Connection to stick-breaking attention
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Parallel Form of Gated Linear Attention

oi =
∑i

j=1 (ϕ(qi)⊤ϕ(kj))vj

∑i
j=1 ϕ(qi)⊤ϕ(kj)

Parallel form of linear attention Recurrent form of linear attention

Add a forget gate ft = σ(wf xt)

Recurrent form of gated linear attention

•  

•  

•

St = ftSt−1 + vtϕ(kt)⊤

zt = ftzt−1 + ϕ(kt)

ot =
Stϕ(qt)
z⊤

t ϕ(qt)

Shown in GLA and Mamba-2

Parallel form of gated linear attention

where Fij =
i

∏
l=j+1

fl

oi =
∑i

j=1 Fij(ϕ(qi)⊤ϕ(kj))vj

∑i
j=1 Fijϕ(qi)⊤ϕ(kj)

•  

•  

•

St = St−1 + vtϕ(kt)⊤

zt = zt−1 + ϕ(kt)

ot =
Stϕ(qt)
z⊤

t ϕ(qt)
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Gated Linear Attention to Forgetting Attention

oi =
∑i

j=1 Fij exp(q⊤
i kj)vj

∑i
j=1 Fij exp(q⊤

i kj)

ϕ(qi)⊤ϕ(kj) → exp(q⊤
i kj)

oi =
∑i

j=1 Fij(ϕ(qi)⊤ϕ(kj))vj

∑i
j=1 Fijϕ(qi)⊤ϕ(kj)
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Connection to ALiBi

• Logit bias form 

•  

• where  

• Let , then , which is ALiBi. 

• So: Forgetting Attention can be seen a learnable and data-dependent version of ALiBi 

• And naturally works much better in practice!

oi =
∑i

j=1 exp(q⊤
i kj + dij)vj

∑i
j=1 exp(q⊤

i kj + dij)

dij = log Fij =
i

∑
l=j+1

log fl

fl = exp(−m) dij = − m( j − i)
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Connection to Stick-Breaking Attention (SBA)

• SBA:  

•  

•  

•

βij = σ(q⊤
i kj)

Ai,j = βi,j ∏
j<k<i

(1 − βi,k)

oi =
i−1

∑
j=1

Ai,jvi

• Similarity 
• Both have data-dependent decay 

• Difference 
• Retrieval and decay 

•  in SBA is responsible for both retrieval and decay 

• In Forgetting Attention, softmax is responsible for 
retrieval,  is responsible for decay 

• SBA decay is query-dependent 
• SBA decay is meant for implementing “first match”, 

instead of “doing retrieval within a local scope” (though it 
can certainly do that) 

βi,j

ft

But you can combine Forgetting Attention and SBA; just add the  factor!Fij

Retrieval Decay
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Implementation
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• Logit bias form 

•  

• where  

•

oi =
∑i

j=1 exp(q⊤
i kj + dij)vj

∑i
j=1 exp(q⊤

i kj + dij)

dij =
i

∑
l=j+1

log fl

O = softmax(QK⊤ + D)V

Efficient Implementation

• Trick for computing  

• First compute .  

• ,  

• , 

• … 

•  

• Then we have 

dij =
i

∑
l=j+1

log fl

ci =
i

∑
l=1

log fl

c1 = log f1
c2 = log f1 + log f2

c4 = log f1 + log f2 + log f3 + log f4
dij = ci − cj

Only need a simple modification 
to Flash Attention!
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Efficient Computation of D

c⊤

c D
ci

c1 c2 c3 c4 c5

dij

cj
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Add it to FlashAttention

Y( j)
i ← Y( j−1)

i + exp(QiK⊤
j )Vj

Z( j)
i = Z( j−1)

i + exp(QiK⊤
j )1

O

V
K

Q
Oi Qi

V1 V2 V3 V4 V5

K1 K2 K3 K4 K5

Pa
ra

lle
l

Sequential

Y( j)
i ← Y( j−1)

i + exp(QiK⊤
j + Dij)Vj

Z( j)
i = Z( j−1)

i + exp(QiK⊤
j + Dij)1

Dij = ci1⊤ − 1c⊤
j
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Potential Issues of Global Cumsum Implementation

• Trick for computing  

• First compute .  

• Then we have 

dij =
i

∑
l=j+1

log fl

ci =
i

∑
l=1

log fl

dij = ci − cj

• Potential issue: cancellation error (e.g., 
) when computing 

•  

• , where  is loss and  

• Unfortunately it doesn’t seem possible to 
avoid both in the backward pass (without 
quadratic memory cost). 

• Fine with FP32 and context length 32k. Might be 
problematic for super long context though (e.g., 
10M tokens).

(a + b + c) − (a + b) ≠ c

dij
∂L
∂rt

L rt = log ft
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Avoiding Cancellation Error for dij

Y( j)
i ← Y( j+1)

i + exp(QiK⊤
j )Vj

Z( j)
i = Z( j+1)

i + exp(QiK⊤
j )1

O

V
K

Q
Oi Qi

V1 V2 V3 V4 V5

K1 K2 K3 K4 K5

Pa
ra

lle
l

Sequential

Y( j)
i ← Y( j+1)

i + exp(QiK⊤
j + Dij)Vj

Z( j)
i = Z( j+1)

i + exp(QiK⊤
j + Dij)1

γ( j)
i = γ( j+1)

i + Γ1:B,B ∈ ℝB
Γ = cumsum(mask(1(log fi)⊤)) ∈ ℝB×B

Dij = γ( j)
i 1⊤ − Γ ∈ ℝB×B
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Avoiding Cancellation Error for Gradients of log ft

• Let  

• Let  

• Let  be the loss. Then: 

•  

• Requires scanning from left to 
right (and thus cancellation error in 

 computation is inevitable) 

• Requires atomic add

sij = q⊤
i kj + dij

rt = log ft
L

∂L
∂rt

=
L

∑
i=t

t−1

∑
j=1

∂L
∂sij

dij

Query i

Key j

ft
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Architecture Design
• No RoPE for FoX by default 

• FoX (LLaMA): replaces RoPE in the LLaMA 
arch with forget gates 

• FoX (Pro): FoX (LLaMA) plus some 
components commonly used in recurrent 
models 

• QK-norm 

• Output normalization 

• Output gate 

• Data-dependent token shift for keys/values 
(KV-shift)

FoX Layer

RMSNorm Linear ShiftLinear ShiftLinear Linear Linear

Forgetting Attention

RMSNorm RMSNorm

RMSNorm

Linear
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Experiments
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• Our experimental design focuses on one question:  

• Does FoX forget things in long-context modeling? 

• No. What happens in practice is: 

• Some heads do forget quickly (local heads) 

• Some heads have extremely slow forgetting (global heads) 

• Overall:  

• Similar to the Transformer, FoX is great at modeling long sequences 

• In fact, the longer the sequence, the greater the advantage of FoX over the (RoPE-
based) Transformer.

Core Question
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Overview

• Long-context language modeling 

• IMPORTANT: per-token loss analysis 

• Needle-in-a-haystack 

• Short-context and long-context downstream tasks 

• Ablation studies and analyses 

• Different model sizes and training context lengths 

• Components in the Pro architecture 

• RoPE 

• Data-independent/fixed forget gates
25



Setting

• Dataset:  

• LongCrawl64: a pre-
tokenized long-sequence 
subset of RedPajama-v2 

• Model size: 

• 760M (non-embedding) 
parameters 

• Tokens: 

• Training: 48B tokens 

• Eval: 2B tokens

• Baselines 

• FoX (Pro) 

• FoX (LLaMA) 

• Transformer (Pro) 

• Transformer (LLaMA) 

• Mamba-2 

• DeltaNet 

• HGRN2

• Context lengths: 

• Training: 16K tokens 

• Eval: Up to 64K tokens 

• HParam search: 

• Search LR in 
 for 

different s 

• Search head dim in  
for FoX and Transformer

{1 × 10i,2 × 10i,5 × 10i}
i′ 

{64,128}
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Comments on Optimal Hyperparameters

• FoX prefers more heads (and thus smaller head 
dims) than the Transformer  

• For 760m-param models,  for FoX and 
 for the Transformer 

• Shouldn’t matter for larger scales because larger 
models typically have more heads instead of larger 
head dims 

• FoX prefers higher learning rates than the 
Transformer 

• Pro architecture models prefer higher learning 
rates than LLaMA architecture models

dhead = 64
dhead = 128
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Main Metric: Per-Token Loss

•  

• : the -th token position 

• : the -th sequence 

• : probability over 
vocab 

• : one-hot encoding 
of language modeling target

L(i) =
1
N

N

∑
j=1

− [log(p( j)
i )⊤y( j)

i ]

i i

j j

p( j)
i ∈ ℝ|V|

y( j)
i ∈ {0,1}|V| x1 x2 x3 x4

p1 p2 p3 p4

y1 y2 y3 y4

Model

L(1) L(2) L(3) L(4)
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Per-Token Loss
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• Per-token loss examples



Per-Token Loss and Long Context Modeling
• For a perfect model,  should be 

monotonically decreasing w.r.t.  

• Given there is no positional bias in the data 

• The slope of  at   model’s ability to 
utilizes tokens that are  steps earlier 

•  plateaus after index : the model cannot  
effective utilize a context with more than  
token

L(i)
i

L(i) i ↔
i

L(i) k
k

L(90)

L(100)

90 tokens

100 tokens

10 more tokens, more information
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Difference Between Per-Token Loss and Perplexity

• Per-token loss at token index :  

•  

• Cumulative average of per-token loss over context length : 

•  

• Perplexity over context length : 

•

i

L(i)

l

Lcum-avg(l) =
l

∑
i=1

L(l)

l

P(l) = exp(
l

∑
i=1

L(i))
The slope of  could be 
misleading! Report  instead!

P(l)
L(i)
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Per-Token Loss
• FoX is better than the (RoPE-based) Transformer 

• Similar to the Transformer, FoX has a monotonically decreasing per-token loss curve 

• Recurrent sequence models cannot fully utilize the long context for their predction
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Extrapolation
Training context length
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Comments
• I recommend everyone plot , especially for linear 

complexity models (including SWA models).  

• For long-context capabilities, what matters is the slope , not 

the (absolute) value  

•  says nothing about the model’s ability to model 

dependencies that are  tokens long;  does. 

• One of the reasons loss  downstream task performance 

• Also matters for extrapolation: plateauing loss is not “true” 
extrapolation (caveat: don’t use perplexity ) 

• True extrapolation: the extra context should improve 
prediction;  

• A single-layer SWA models with window size 50 and a training 
context length of 100 will have perfect “extrapolation”

L(i)

dL
di

L(i)

L(10000)
10000

dL
di

(10000)

≠

P(l)
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Comments
• You can see a qualitative difference between the 

Transformer and linear complexity models even with 
small models (e.g., 125m) 

• Actually, most obvious with small models with a 
long training context length 

• For evaluation: you will need real long sequences 
to see this 

• Concatenating short sequences won’t work (see 
https://manifestai.com/articles/compute-optimal-
context-size/) 

• Not sure if this is needed during training (maybe 
mixing long and short sequences are fine).
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Forget Gate Matrix and Attention Map

• Forget gate matrix :  

• Attention matrix:  (only showing entries larger than 0.5)

F Fij =
i

∏
l=j+1

fl

A = softmax(QK⊤ + log F)
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Needle-in-a-Haystack
• Standard mode: 

• Needle:  
• The best thing to do in San Francisco is eat a sandwich and sit in Dolores Park on 
a sunny day.

• Query: 
• What is the best thing to do in San Francisco? Answer: The best thing to do in San 
Francisco is 

• Easy mode (Qin et al., 2024): 

• Needle:  
• What is the best thing to do in San Francisco? Answer: The best thing to do in San 
Francisco is eat a sandwich and sit in Dolores Park on a sunny day.

• Query: 
• What is the best thing to do in San Francisco? Answer: The best thing to do in San 
Francisco is
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Needle-in-a-Haystack

38

Further evidence that FoX 
can learn not to forget 



Extrapolation Behavior is Hyperparameter-Dependent

• In general:  

• Longer training leads to worse extrapolation. 

• Smaller model + longer training context length = better extrapolation; vice versa 

• Not sure about LR 

• Extrapolation is nice, but unreliable. Probably still best to do long-context finetuning
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Short-Context Downstream Tasks

• From Language Model Evaluation Harness

40



Long-Context Downstream Tasks
• From LongBench-v1
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Model Size/Training Context Length
• Note: these experiments use LRs tuned for Transformer (LLaMA) with context length 16k. Under optimal LRs 

the gaps will likely be larger 

• Hypothesis: the benefits of forget gates depend on the ratio between model size and training context length 

• Larger models can better model long contexts, thus forgetting is less important
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Ablations
• Everything in the Pro architecture is useful

Published as a conference paper at ICLR 2025

Table 3: Ablation experiments for FoX. We use 360M-parameter models trained on 7.5B tokens on
LongCrawl64. The perplexity is measured over a validation context length of 16384 tokens. For the
bottom half, all addition (+) or removal (-) of components are relative to FoX (Pro).

Model RoPE Forget gate QK-norm Output gate Output norm KV-shift Perplexity
Transformer (LLaMA) w/o RoPE 29.30
Transformer (LLaMA) 3 7.49

3 3 7.19
FoX (LLaMA) 3 7.25

3 3 7.08
3 3 3 6.88
3 3 3 3 6.80

FoX (Pro) 3 3 3 3 3 6.62

- QK-norm 3 3 3 3 6.79
- output gate 3 3 3 3 6.86
- output norm 3 3 3 3 6.69
- KV-shift 3 3 3 3 6.80
+ RoPE 3 3 3 3 3 3 6.63
- forget gate + RoPE (i.e. Transformer (Pro)) 3 3 3 3 3 6.82
- forget gate 3 3 3 3 7.40

Figure 7: Data-dependent forget gate (data-dep) vs. data-independent (data-indep) and fixed forget
gate. (left and middle-left) Comparison using the LLaMA architecture. (middle-right and right)
Comparison using the Pro architecture. We use 360M-parameter models trained on roughly 7.5B
tokens on LongCrawl64. All per-token loss curves are smoothed with a moving average sliding
window of 1001 tokens. The vertical dashed line indicates the training context length.

Model size and training context length In Figure 6, we show the per-token loss for two different
model sizes (trained on different numbers of tokens) and several training context lengths for FoX
(Pro) and Transformer (Pro). As shown in Figure 6, the advantages of FoX over Transformer (1)
increase as we increase the training context length and (2) decrease as we increase the model size
(and training tokens). This indicates that the advantages of having a forget gate might depend on the
ratio between the model size and the training context length, as larger models can better model long
contexts, and thus forgetting may be less important. We also note that long-context training damages
short-context performance, which is a known effect (Ren et al., 2024; Sun et al., 2024) likely due to
reduced document diversity within training batches.

Component analysis We present both (1) an “incremental” style analysis where we incrementally
add/remove components from Transformer (LLaMA) to obtain the complete FoX (Pro) model and
(2) a “perturbation” style analysis where we add/remove components from FoX (Pro). The results
are shown in Table 3. First, as mentioned previously, adding RoPE to FoX (LLaMA) and FoX (Pro)
results in minor and no improvement, respectively. Second, both types of analyses show that all
components in FoX contribute positively. Also note that models that use neither forget gates nor
RoPE perform poorly (the first and the last row of the table).

Data-independent and fixed forget gates To show the importance of using a forget gate that is
data-dependent, we test a data-independent forget gate f

(h)
t

= �(b(h)), where the superscript (h)
means for the h-th head. We also test a forget gate that has fixed values (i.e., f

(h)
t

= �(b(h)),
but we do not update b

(h)). As mentioned in Section 3, using a fixed forget gate is equivalent to
ALiBi. For these data-independent forget gate designs, we find it crucial to initialize b

(h) properly.
In particular, we intialize {b(h)}H

h=1 for the H heads with two hyperparameter Tmin and Tmax such

9

Poor performance if removing 
both forget gates and RoPE
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Ablations
• Unclear whether RoPE is still useful in FoX; certainly not necessary

Published as a conference paper at ICLR 2025

Table 3: Ablation experiments for FoX. We use 360M-parameter models trained on 7.5B tokens on
LongCrawl64. The perplexity is measured over a validation context length of 16384 tokens. For the
bottom half, all addition (+) or removal (-) of components are relative to FoX (Pro).

Model RoPE Forget gate QK-norm Output gate Output norm KV-shift Perplexity
Transformer (LLaMA) w/o RoPE 29.30
Transformer (LLaMA) 3 7.49

3 3 7.19
FoX (LLaMA) 3 7.25
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- forget gate + RoPE (i.e. Transformer (Pro)) 3 3 3 3 3 6.82
- forget gate 3 3 3 3 7.40

Figure 7: Data-dependent forget gate (data-dep) vs. data-independent (data-indep) and fixed forget
gate. (left and middle-left) Comparison using the LLaMA architecture. (middle-right and right)
Comparison using the Pro architecture. We use 360M-parameter models trained on roughly 7.5B
tokens on LongCrawl64. All per-token loss curves are smoothed with a moving average sliding
window of 1001 tokens. The vertical dashed line indicates the training context length.
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model sizes (trained on different numbers of tokens) and several training context lengths for FoX
(Pro) and Transformer (Pro). As shown in Figure 6, the advantages of FoX over Transformer (1)
increase as we increase the training context length and (2) decrease as we increase the model size
(and training tokens). This indicates that the advantages of having a forget gate might depend on the
ratio between the model size and the training context length, as larger models can better model long
contexts, and thus forgetting may be less important. We also note that long-context training damages
short-context performance, which is a known effect (Ren et al., 2024; Sun et al., 2024) likely due to
reduced document diversity within training batches.

Component analysis We present both (1) an “incremental” style analysis where we incrementally
add/remove components from Transformer (LLaMA) to obtain the complete FoX (Pro) model and
(2) a “perturbation” style analysis where we add/remove components from FoX (Pro). The results
are shown in Table 3. First, as mentioned previously, adding RoPE to FoX (LLaMA) and FoX (Pro)
results in minor and no improvement, respectively. Second, both types of analyses show that all
components in FoX contribute positively. Also note that models that use neither forget gates nor
RoPE perform poorly (the first and the last row of the table).

Data-independent and fixed forget gates To show the importance of using a forget gate that is
data-dependent, we test a data-independent forget gate f
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means for the h-th head. We also test a forget gate that has fixed values (i.e., f
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Data-Independent Forget Gate

• Data-dependent: 

•  

• Data-independent: 

•  

• Fixed (equivalent to ALiBi): 

• , with fixed 

f (h)
t = σ(w(h)

f xt + b(h)
f )

f (h)
t = σ(b(h)

f )

f (h)
t = σ(b(h)

f ) b(h)
f
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Data-Independent Forget Gate

• For data-indep and fixed forget gates,  are initialized with two hparams 

 such that 

• Fixed forget gates initialized with  is equivalent to ALiBi with 
maximum slope  and minimum slope 

{b(h)
f }H

h=1

(Tmin, Tmax)

(Tmin, Tmax)1
Tmin

1
Tmax
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Data-Dependent vs Data-Independent vs Fixed

• We fix  and vary  

• Data-dependent forget gates always the best, and hyperparameter-free.

Tmin = 2 Tmax
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Future Directions
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Future directions

• Try FoX at larger scales 

• Make this bi-directional 

• Long-context fine-tuning: should be great because 

• Forget gates are learnable and data-dependent: should adapt quickly 

• FoX has better length extrapolation: stable and faster learning during fine-tuning 

• Adding forget gates to pretrained models (e.g., LLaMA3), and the finetune 

• It should adapt quickly 

• Saving computation based on forget gate values (work in progress).
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Many Heads Are Local
• If a head only uses a local context, no need to waste compute on distant tokens 

(they don’t affect the output anyways)
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Adaptive Block Skipping

•  by definition. So if  is very negative for some , we can safely ignore  

• Guaranteed to lossless if  is bounded, which is true if we use QK-norm. 

• 125M model, 16K training context lengths, 30% throughput improvement 

• Saved attention FLOPs should be way larger than 30%.

dii = 0 dij j ≠ i exp(q⊤
i kj + dij)vj

q⊤
i kj

oi =
∑i

j=1 exp(q⊤
i kj + dij)vj

∑i
j=1 exp(q⊤

i kj + dij)

• , where 

 

dij = ci − cj

ci =
i

∑
l=1

log fl

Very cheap to compute
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Thanks!

52



References
• Klaus Greff, Rupesh K Srivastava, Jan Koutn´ık, Bas R Steunebrink, and J¨urgen Schmidhuber. Lstm: A search space odyssey. IEEE 

transactions on neural networks and learning systems, 28(10): 2222–2232, 2016. 
• Jos Van Der Westhuizen and Joan Lasenby. The unreasonable effectiveness of the forget gate. arXiv preprint arXiv:1804.04849, 

2018. 
• Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention transformers with hardware-

efficient training. arXiv preprint arXiv:2312.06635, 2023. 
• Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv preprint arXiv:2312.00752, 2023. 
• Jacob Buckman, Carles Gelada, and Sean Zhang. Symmetric Power Transformers, 2024. 
• Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A Smith, and Lingpeng Kong. Random feature attention. arXiv 

preprint arXiv:2103.02143, 2021. 
• Choromanski, Krzysztof, et al. "Rethinking attention with performers." arXiv preprint arXiv:2009.14794 (2020). 
• Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transformers with the delta rule over 

sequence length. arXiv preprint arXiv:2406.06484, 2024. 
• Schlag, Imanol, Kazuki Irie, and Jürgen Schmidhuber. "Linear transformers are secretly fast weight programmers." International 

Conference on Machine Learning. PMLR, 2021. 
• Munkhdalai, Tsendsuren, et al. "Metalearned neural memory." Advances in Neural Information Processing Systems 32 (2019).

53



References
• S4: Gu, Albert, Karan Goel, and Christopher Ré. "Efficiently modeling long sequences with structured state spaces." arXiv preprint arXiv:2111.00396 (2021). 
• S5: Smith, Jimmy TH, Andrew Warrington, and Scott W. Linderman. "Simplified state space layers for sequence modeling." arXiv preprint arXiv:2208.04933 (2022). 
• LRU: Orvieto, Antonio, et al. "Resurrecting recurrent neural networks for long sequences." International Conference on Machine Learning. PMLR, 2023. 
• HGRN: Qin, Zhen, Songlin Yang, and Yiran Zhong. "Hierarchically gated recurrent neural network for sequence modeling." Advances in Neural Information Processing Systems 36 (2024). 
• Mega: Ma, Xuezhe, et al. "Mega: moving average equipped gated attention." arXiv preprint arXiv:2209.10655 (2022). 
• RG-LRU: De, Soham, et al. "Griffin: Mixing gated linear recurrences with local attention for efficient language models." arXiv preprint arXiv:2402.19427 (2024). 
• Gated RFA: Peng, Hao, et al. "Random feature attention." arXiv preprint arXiv:2103.02143 (2021). 
• RWKV-4: Peng, Bo, et al. "Rwkv: Reinventing rnns for the transformer era." arXiv preprint arXiv:2305.13048 (2023). 
• linear attention: Katharopoulos, Angelos, et al. "Transformers are rnns: Fast autoregressive transformers with linear attention." International conference on machine learning. PMLR, 

2020. 
• GLA: Yang, Songlin, et al. "Gated linear attention transformers with hardware-efficient training." arXiv preprint arXiv:2312.06635 (2023). 
• Mamba-2: Dao, Tri, and Albert Gu. "Transformers are SSMs: Generalized models and efficient algorithms through structured state space duality." arXiv preprint arXiv:2405.21060 (2024). 
• RetNet: Sun, Yutao, et al. "Retentive network: A successor to transformer for large language models." arXiv preprint arXiv:2307.08621 (2023). 
• HGRN2: Qin, Zhen, et al. "Hgrn2: Gated linear rnns with state expansion." arXiv preprint arXiv:2404.07904 (2024). 
• RWKV-6: Peng, Bo, et al. "Eagle and finch: Rwkv with matrix-valued states and dynamic recurrence." arXiv preprint arXiv:2404.05892 (2024). 
• xLSTM: Beck, Maximilian, et al. "xLSTM: Extended Long Short-Term Memory." arXiv preprint arXiv:2405.04517 (2024). 
• ALiBi: Press, Ofir, Noah A. Smith, and Mike Lewis. "Train short, test long: Attention with linear biases enables input length extrapolation." arXiv preprint arXiv:2108.12409 (2021). 
• RoPE: Su, Jianlin, et al. "Roformer: Enhanced transformer with rotary position embedding." Neurocomputing 568 (2024): 127063. 
• Gated DeltaNet: Yang, Songlin, Jan Kautz, and Ali Hatamizadeh. "Gated Delta Networks: Improving Mamba2 with Delta Rule." arXiv preprint arXiv:2412.06464 (2024). 
• SBA: Tan, Shawn, et al. "Stick-breaking Attention." arXiv preprint arXiv:2410.17980 (2024).

54


