Forgetting Transformer: Softmax Attention with a Forget Gate

¹Mila & Université de Montréal ²MakerMaker AI In ICLR 2025

Code available at: <u>https://github.com/zhixuan-lin/forgetting-transformer</u>

2025-03-20

Zhixuan Lin¹, Evgenii Nikishin¹, Xu Owen He², Aaron Courville¹

•	k	e	r.	F	

- Motivation
- Forgetting Attention and Forgetting Transformer (FoX)
- FlashAttention-based Implementation
- Results and analyses
- Future directions

Overview

Motivation

Motivation

- Forget gates are ubiquitous in **recurrent sequence models** (e.g., linear attention) • LSTM, Gated RFA, GLA, Mamba-2, HGRN2, RWKV series, xLSTM, Gated DeltaNet... • Forget gates are known to be crucial for performance
- - See Greff et al., 2016; Van Der Westhuizen & Lasenby, 2018; Peng et al., 2021; Yang et al., 2023; Gu & Dao, 2023
- Softmax attention and linear attention are very similar in form.
 - Softmax attention can be seen as linear attention with an infinite dimensional state
 - $\exp(q^{\top}k) = \langle \phi(q), \phi(k) \rangle$, where ϕ maps to an infinite dimensional space
 - So let's try adding a forget gate to softmax attention!

Why are Forget Gates Useful?

- Every model has limited modeling capabilities:
 - For recurrent models: limited by #params and state size
 - For Transformers: limited #params
- Forgetting makes things easier to model (less things to process) • **NOTE:** there are many heads. There could still be heads that DO NOT forget

Method

Intuition

- Forget gates \Leftrightarrow data-dependent decay of input-output dependencies
- Consider a minimal RNN mapping $(x_i)_{i=1}^L$ to $(o_i)_{i=1}^L$ (everything in \mathbb{R}^d)
 - $h_t = f_t h_{t-1} + x_t$, where $f_t \in (0,1)$

•
$$o_t = h_t$$

• Easy to show: $o_i = \sum_{j=1}^{j} F_{ij} x_j$, where $F_{ij} = \prod_{i=1}^{j} f_i$ <u>i=1</u>

Takeaway: models without (explicit) recurrence can also have a forget gate

Forgetting Attention

- Softmax attention with a forget gate
 - $q_i, k_i, v_i = W_q x_i, W_k x_i, W_v x_i \in \mathbb{R}^d$
 - $f_i = \sigma(w_f x_i + b_f) \in \mathbb{R}$ • $F_{ij} = \prod_{\substack{l=j+1 \\ l=j+1}}^{i} f_l$ • $o_i = \frac{\sum_{j=1}^{i} F_{ij} \exp(q_i^{\mathsf{T}} k_j) v_j}{\sum_{j=1}^{i} F_{ij} \exp(q_i^{\mathsf{T}} k_j)}$

Logit bias form

•
$$o_i = \frac{\sum_{j=1}^{i} \exp(q_i^{\mathsf{T}} k_j + d_{ij}) v_j}{\sum_{j=1}^{i} \exp(q_i^{\mathsf{T}} k_j + d_{ij})}$$

• where $d_{ij} = \log F_{ij} = \sum_{l=j+1}^{i} \log f_l$

- Matrix form:
 - $D = \log F$
 - $O = \operatorname{softmax}(QK^{\top} + D)V$

Comments

- $\frac{1}{\sqrt{d}}$ logit scaling is omitted in the previous slide; in practice we always use it
- For MHA, one forget gate per head: $f_t^{(h)} = \sigma(w_f^{(h)})$
 - Sharing a forget gate across heads performs poorly.
- Forget gates are scalar-valued. So the additional computation and parameters are negligible.
- No need for RoPE, so
 - Convenient for long context fine-tuning: no need to adjust θ (e.g. in YaRN)
 - Convenient for non-standard attention such as MLA and NSA
 - It is elegant :)
- Hyperparameter-free, unlike RoPE or ALiBi

$$x_t + b_f^{(h)})$$

Connections to Prior/Concurrent Work

- Connection to linear attention models with forget gates (e.g., GLA, Mamba-2) • Connection to Attention with Linear Bias (ALiBi)
- Connection to stick-breaking attention

Parallel Form of Gated Linear Attention

Parallel form of linear attention

$$o_{i} = \frac{\sum_{j=1}^{i} (\phi(q_{i})^{\top} \phi(k_{j})) v_{j}}{\sum_{j=1}^{i} \phi(q_{i})^{\top} \phi(k_{j})}$$

where
$$F_{ij} = \prod_{l=j+1}^{i} f_l$$

$$o_i = \frac{\sum_{j=1}^{i} F_{ij}(\phi(q_i)^{\mathsf{T}} \phi(k_j))v_j}{\sum_{j=1}^{i} F_{ij} \phi(q_i)^{\mathsf{T}} \phi(k_j)}$$
Shown in Q

Parallel form of gated linear attention

Recurrent form of linear attention

Recurrent form of **gated** linear attention

Gated Linear Attention to Forgetting Attention

$$o_{i} = \frac{\sum_{j=1}^{i} F_{ij}(\phi(q_{i})^{\mathsf{T}}\phi(k_{j}))v_{j}}{\sum_{j=1}^{i} F_{ij}\phi(q_{i})^{\mathsf{T}}\phi(k_{j})} \xrightarrow{\phi(q_{i})^{\mathsf{T}}\phi(k_{j}) \to \exp(q_{i}^{\mathsf{T}}k_{j})} o_{i} = \frac{\sum_{j=1}^{i} F_{ij}\exp(q_{i}^{\mathsf{T}}k_{j})v_{j}}{\sum_{j=1}^{i} F_{ij}\exp(q_{i}^{\mathsf{T}}k_{j})}$$

Connection to ALiBi

Logit bias form

•
$$o_i = \frac{\sum_{j=1}^{i} \exp(q_i^{\top} k_j + d_{ij}) v_j}{\sum_{j=1}^{i} \exp(q_i^{\top} k_j + d_{ij})}$$

• where $d_{ij} = \log F_{ij} = \sum_{l=j+1}^{i} \log f_l$

- Let $f_l = \exp(-m)$, then $d_{ij} = -m(j-i)$, which is ALiBi.
- - And naturally works much better in practice!

• So: Forgetting Attention can be seen a learnable and data-dependent version of ALiBi

Connection to Stick-Breaking Attention (SBA)

• SBA:

• $\beta_{ii} = \sigma(q_i^{\dagger}k_i)$

- Similarity
 - Both have data-dependent decay
- Difference
 - Retrieval and decay
- $\beta_{i,i}$ in SBA is responsible for both retrieval and decay • In Forgetting Attention, softmax is responsible for retrieval, f_t is responsible for decay • SBA decay is query-dependent SBA decay is meant for implementing "first match", • instead of "doing retrieval within a local scope" (though it Retrieval Decay can certainly do that)

But you can combine Forgetting Attention and SBA; just add the F_{ii} factor!

Implementation

Efficient Implementation

- Logit bias form
 - $o_i = \frac{\sum_{j=1}^{i} \exp(q_i^{\mathsf{T}} k_j + d_{ij}) v_j}{\sum_{j=1}^{i} \exp(q_i^{\mathsf{T}} k_j + d_{ij})}$ • where $d_{ij} = \sum_{l=j+1}^{i} \log f_l$ • $O = \operatorname{softmax}(OK^{\mathsf{T}} + D)V$
 - $O = \operatorname{softmax}(QK^{\top} + D)V$ Only need a simple modification to Flash Attention!

• Trick for computing $d_{ij} = \sum_{l=j+1}^{i} \log f_l$ • First compute $c_i = \sum_{l=1}^{i} \log f_l$.

•
$$c_1 = \log f_1$$
,

•
$$c_2 = \log f_1 + \log f_2$$
,

•

- $c_4 = \log f_1 + \log f_2 + \log f_3 + \log f_4$
- Then we have $d_{ij} = c_i c_j$

Efficient Computation of D

 $C_3 \quad C_4 \quad C_5$

Add it to FlashAttention $Y_i^{(j)} \leftarrow Y_i^{(j-1)} + \exp(Q_i K_j^{\mathsf{T}}) V_j$ \mathbf{V} $V_{\!ee}$ $Z_{i}^{(j)} = Z_{i}^{(j-1)} + \exp(Q_{i}K_{i}^{\mathsf{T}})1$ K_{Δ} $D_{ij} = c_i \mathbf{1}^\top - \mathbf{1} c_j^\top$ $Y_i^{(j)} \leftarrow Y_i^{(j-1)} + \exp(Q_i K_i^{\top} + D_{ij}) V_j$ $Z_{i}^{(j)} = Z_{i}^{(j-1)} + \exp(Q_{i}K_{j}^{T} + D_{ij})1$

Potential Issues of Global Cumsum Implementation

- Trick for computing $d_{ij} = \sum_{l=j+1}^{l} \log f_l$ • First compute $c_i = \sum_{l=1}^{i} \log f_l$.
 - Then we have $d_{ij} = c_i c_j$

- Potential issue: cancellation error (e.g., $(a + b + c) - (a + b) \neq c$) when computing
 - d_{ij} • $\frac{\partial L}{\partial r_{\star}}$, where *L* is loss and $r_t = \log f_t$
- Unfortunately it doesn't seem possible to avoid both in the backward pass (without quadratic memory cost).
- Fine with FP32 and context length 32k. Might be problematic for super long context though (e.g., 10M tokens).

Avoiding Cancellation Error for d_{ii} $Y_i^{(j)} \leftarrow Y_i^{(j+1)} + \exp(Q_i K_j^{\mathsf{T}}) V_j$ V_5 $Z_{i}^{(j)} = Z_{i}^{(j+1)} + \exp(Q_{i}K_{i}^{\mathsf{T}})1$ K_{5} $\Gamma = \operatorname{cumsum}(\operatorname{mask}(1(\log f_i)^{\mathsf{T}})) \in \mathbb{R}^{B \times B}$ $\gamma_i^{(j)} = \gamma_i^{(j+1)} + \Gamma_{1:B,B} \in \mathbb{R}^B$ $D_{ij} = \gamma_i^{(j)} \mathbf{1}^\top - \Gamma \in \mathbb{R}^{B \times B}$ $Y_i^{(j)} \leftarrow Y_i^{(j+1)} + \exp(Q_i K_j^{\mathsf{T}} + D_{ij}) V_j$ $Z_{i}^{(j)} = Z_{i}^{(j+1)} + \exp(Q_{i}K_{j}^{T} + D_{ij})1$

Avoiding Cancellation Error for Gradients of $\log f_t$

- Let $s_{ij} = q_i^{\dagger} k_j + d_{ij}$
- Let $r_t = \log f_t$
- Let *L* be the loss. Then:

$$\frac{\partial L}{\partial r_t} = \sum_{i=t}^{L} \sum_{j=1}^{t-1} \frac{\partial L}{\partial s_{ij}}$$

- Requires scanning from left to right (and thus cancellation error in d_{ii} computation is inevitable)
- Requires atomic add

Architecture Design

- No RoPE for FoX by default
- FoX (LLaMA): replaces RoPE in the LLaMA arch with forget gates
- FoX (Pro): FoX (LLaMA) plus some components commonly used in recurrent models
 - QK-norm
 - Output normalization
 - Output gate
 - Data-dependent token shift for keys/values (KV-shift)

$$\tilde{\boldsymbol{k}}_{t} = \boldsymbol{W}_{k} \boldsymbol{x}_{t} \in \mathbb{R}^{d}, \quad \alpha_{t}^{\text{key}} = \sigma(\boldsymbol{w}_{k}^{\top} \boldsymbol{x}_{t}) \in \mathbb{R}$$
$$\boldsymbol{k}_{t} = \text{RMSNorm}(\alpha_{t}^{\text{key}} \tilde{\boldsymbol{k}}_{t-1} + (1 - \alpha_{t}^{\text{key}}) \tilde{\boldsymbol{k}}_{t})$$

Experiments

Core Question

- Our experimental design focuses on one question:
 - Does FoX forget things in long-context modeling?
- No. What happens in practice is:
 - Some heads do forget quickly (local heads)
 - Some heads have extremely slow forgetting (global heads)
- Overall:
 - Similar to the Transformer, FoX is great at modeling long sequences
 - In fact, the longer the sequence, the greater the advantage of FoX over the (RoPEbased) Transformer.

Overview

- Long-context language modeling
 - **IMPORTANT:** per-token loss analysis
- Needle-in-a-haystack
- Short-context and long-context downstream tasks
- Ablation studies and analyses
 - Different model sizes and training context lengths
 - Components in the Pro architecture
 - RoPE
 - Data-independent/fixed forget gates

Setting

• Baselines

- FoX (Pro)
- FoX (LLaMA)
- Transformer (Pro)
- Transformer (LLaMA)
- Mamba-2
- DeltaNet
- HGRN2

- **Dataset**:
 - LongCrawl64: a pretokenized long-sequence subset of RedPajama-v2
- Model size:
 - 760M (non-embedding) parameters
- Tokens:
 - Training: 48B tokens
 - Eval: 2B tokens

- Context lengths:
 - Training: 16K tokens
 - Eval: Up to 64K tokens lacksquare

• HParam search:

- Search LR in $\{1 \times 10^{i}, 2 \times 10^{i}, 5 \times 10^{i}\}$ for different *i*'s
- Search head dim in {64,128} for FoX and Transformer

Comments on Optimal Hyperparameters

- FoX prefers more heads (and thus smaller head dims) than the Transformer
 - For 760m-param models, $d_{head} = 64$ for $d_{\text{head}} = 128$ for the Transformer
 - Shouldn't matter for larger scales because models typically have more heads instead head dims
- FoX prefers **higher learning rates** than the Transformer
- Pro architecture models prefer higher learning \bullet **rates** than LLaMA architecture models

FoX and	Model	Learning rate
	FoX (Pro)	2×10^{-3}
	Transformer (Pro)	1×10^{-3}
larger	FoX (LLaMA)	1×10^{-3}
oflarger	Transformer (LLaMA)	5×10^{-4}
orlarger	Mamba-2	2×10^{-3}
	HGRN2	2×10^{-3}
	DeltaNet	$ 1 \times 10^{-3}$

•
$$L(i) = \frac{1}{N} \sum_{j=1}^{N} - [\log(p_i^{(j)})^{\mathsf{T}} y_i^{(j)}]$$

- *i*: the *i*-th token position
- *j*: the *j*-th sequence
- $p_i^{(j)} \in \mathbb{R}^{|V|}$: probability over vocab
- $y_i^{(j)} \in \{0,1\}^{|V|}$: one-hot encoding of language modeling target

Per-Token Loss

• Per-token loss examples

Big model with terrible long-context capabilities and fake extrapolation Small model with superior long-context capabilities and true extrapolation

Small model with superior long-context capabilities that does not extrapolate at all

- For a perfect model, L(i) should be monotonically decreasing w.r.t. i
- Given there is no positional bias in the data
 - The slope of L(i) at $i \leftrightarrow$ model's ability to utilizes tokens that are *i* steps earlier
 - *L*(*i*) plateaus after index *k*: the model cannot effective utilize a context with more than k token

Difference Between Per-Token Loss and Perplexity

• Per-token loss at token index *i*:

• *L*(*i*)

• Cumulative average of per-token loss over context length *l*:

•
$$L_{\text{cum-avg}}(l) = \sum_{i=1}^{l} L(l)$$

• Perplexity over context length *l*:

•
$$P(l) = \exp(\sum_{i=1}^{l} L(i))$$

— The slope of P(l) could be misleading! Report L(i) instead!

Per-Token Loss

- FoX is better than the (RoPE-based) Transformer
- Similar to the Transformer, FoX has a monotonically decreasing per-token loss curve

Comments

- I recommend everyone plot L(i), especially for **linear** complexity models (including SWA models).
- For long-context capabilities, what matters is the slope $\frac{dL}{dL}$, not the (absolute) value L(i)
 - L(10000) says nothing about the model's ability to model dependencies that are 10000 tokens long; $\frac{dL}{di}$ (10000) does.
 - One of the reasons loss \neq downstream task performance
- Also matters for extrapolation: plateauing loss is not "true" **extrapolation** (caveat: don't use perplexity P(l))
 - True extrapolation: the extra context should improve prediction;
 - A single-layer SWA models with window size 50 and a training context length of 100 will have perfect "extrapolation"

Comments

- You can see a **qualitative** difference between the Transformer and linear complexity models even with small models (e.g., 125m)
 - Actually, most obvious with small models with a long training context length
- For evaluation: you will need **real long sequences** to see this
 - Concatenating short sequences won't work (see https://manifestai.com/articles/compute-optimal-<u>context-size/</u>)
 - Not sure if this is needed during training (maybe mixing long and short sequences are fine).

Forget Gate Matrix and Attention Map

• Forget gate matrix
$$F: F_{ij} = \prod_{l=j+1}^{i} f_l$$

• Attention matrix: $A = \operatorname{softmax}(QK^{\top} + \log F)$ (only showing entries larger than 0.5)

Needle-in-a-Haystack

- Standard mode:
 - Needle:
 - a sunny day.
 - Query:
 - Francisco is
- Easy mode (Qin et al., 2024):
 - Needle:
 - Francisco is eat a sandwich and sit in Dolores Park on a sunny day.
 - Query:
 - Francisco is

• The best thing to do in San Francisco is eat a sandwich and sit in Dolores Park on

• What is the best thing to do in San Francisco? Answer: The best thing to do in San

• What is the best thing to do in San Francisco? Answer: The best thing to do in San

• What is the best thing to do in San Francisco? Answer: The best thing to do in San

Needle-in-a-Haystack

Further evidence that FoX can learn not to forget

Extrapolation Behavior is Hyperparameter-Dependent

- In general:
 - Longer training leads to worse extrapolation.

 - Not sure about LR

• Smaller model + longer training context length = better extrapolation; vice versa

• Extrapolation is nice, but unreliable. Probably still best to do long-context finetuning

Short-Context Downstream Tasks

• From Language Model Evaluation Harness

Table 1: Evaluation results on LM-eval-harness. All models have roughly 760M non-embedding parameters and are trained on roughly 48B tokens on LongCrawl64. "acc-n" means length-normalized accuracy. Bold and underlined numbers indicate the best and the second best results, respectively.

Model	Wiki.	LMB.	LMB. acc↑	PIQA acc↑	Hella. acc-n↑	Wino. acc↑	ARC-e acc↑	ARC-c acc-n↑	COPA acc↑	OBQA acc-n↑	SciQA acc↑	BoolQ acc↑	Avg ↑
			40 77	<u>(100</u>					71 00		07.10	46.57	50.00
FoX (Pro)	23.04	14.91	42.75	64.09	38.39	52.33	52.23	26.54	71.00	29.80	85.10	46.57	50.88
Transformer (Pro)	<u>24.12</u>	<u>16.16</u>	<u>41.47</u>	<u>64.04</u>	<u>36.60</u>	49.72	<u>51.98</u>	25.26	62.00	29.20	<u>82.80</u>	60.86	<u>50.39</u>
FoX (LLaMA)	26.45	18.27	40.17	63.44	35.17	<u>51.78</u>	49.66	25.09	69.00	28.00	81.90	54.04	49.82
Transformer (LLaMA)	28.14	22.34	38.27	63.22	34.20	49.49	47.98	24.49	66.00	29.40	78.90	<u>58.93</u>	49.09
Mamba-2	28.20	21.05	36.50	63.17	35.86	50.59	49.96	<u>25.60</u>	71.00	31.00	80.90	57.49	50.21
HGRN2	30.57	20.14	38.60	63.49	34.94	<u>51.78</u>	50.13	25.51	66.00	30.00	75.60	58.41	49.45
DeltaNet	29.17	29.14	34.27	62.73	33.28	50.28	47.39	24.32	<u>70.00</u>	29.00	74.30	54.37	47.99

Long-Context Downstream Tasks

From LongBench-vi

the best and the second-best results, respectively.

	Single-I	Single-Document QA			Multi-Document QA			Summarization			Few-shot Learning			Code	
Model	NatrativeOA	Qasper	MIOA	HotpotOA	2WikiMOA	Musique	GovReport	OMSUM	Multillews	TREC	TriviaOA	SamSum	1°C	RepoBenchrP	
FoX (Pro)	13.38	18.88	28.73	15.27	25.39	6.49	22.71	13.51	12.27	63.5	37.36	22.74	10.9	9.1	
Transformer (Pro)	<u>11.42</u>	21.54	22.89	19.58	<u>22.65</u>	<u>6.09</u>	<u>21.92</u>	10.7	8.11	55.0	40.67	30.66	10.79	14.25	
FoX (LLaMA)	10.47	14.81	<u>24.71</u>	13.03	21.58	5.25	20.05	10.97	4.86	<u>61.5</u>	34.48	19.13	7.69	8.12	
Transformer (LLaMA)	11.11	13.5	21.52	9.42	21.33	4.32	18.53	8.43	<u>10.99</u>	51.5	28.41	19.17	8.21	14.06	
Mamba-2	10.65	11.26	16.98	11.59	16.69	5.0	9.31	11.22	10.89	28.5	15.6	16.19	12.07	<u>15.17</u>	
HGRN2	8.78	10.94	18.66	7.78	15.29	4.32	6.13	12.19	7.83	16.5	14.46	6.37	18.17	16.62	
DeltaNet	9.36	9.76	16.49	6.57	15.09	2.76	8.19	<u>12.3</u>	7.62	35.5	17.57	18.42	<u>12.24</u>	3.94	

Table 2: Evalution results on LongBench. All models have roughly 760M non-embedding parameters and are trained on roughly 48B tokens on LongCrawl64. Bold and underlined numbers indicate

Model Size/Training Context Length

- the gaps will likely be larger
- - Larger models can better model long contexts, thus forgetting is less important

• Note: these experiments use LRs tuned for Transformer (LLaMA) with context length 16k. Under optimal LRs

• Hypothesis: the benefits of forget gates depend on the ratio between model size and training context length

Ablations

• Everything in the Pro architecture is useful

Table 3: Ablation experiments for FoX. We use 360M-parameter models trained on 7.5B tokens on LongCrawl64. The perplexity is measured over a validation context length of 16384 tokens. For the bottom half, all addition (+) or removal (-) of components are relative to FoX (Pro).

Model	RoPE	Forget gate	QK-norm	Output gate	Output norm	KV-shift Perplexity	_
Transformer (LLaMA) w/o RoPE						29.30	_
Transformer (LLaMA)	1					7.49	
	\checkmark	\checkmark				7.19	
FoX (LLaMA)		\checkmark				7.25	
		\checkmark	\checkmark			7.08	
		\checkmark	\checkmark	\checkmark		6.88	
		\checkmark	\checkmark	\checkmark	\checkmark	6.80	
FoX (Pro)		\checkmark	\checkmark	\checkmark	\checkmark	✓ 6.62	
- QK-norm		\checkmark		\checkmark	\checkmark	✓ 6.79	
- output gate		\checkmark	\checkmark		\checkmark	✓ 6.86	
- output norm		\checkmark	\checkmark	\checkmark		✓ 6.69	
- KV-shift		\checkmark	\checkmark	\checkmark	\checkmark	6.80	Poor performance if rem
+ RoPE		\checkmark	\checkmark	\checkmark	\checkmark	✓ 6.63	
- forget gate + RoPE (i.e. Transformer (Pro))			\checkmark	\checkmark	\checkmark	6.82	// both forget gates and Ro
- forget gate			✓	✓	<i>✓</i>	✓ <u>(7.40</u>	

Ablations

• Unclear whether RoPE is still useful in FoX; certainly not **necessary**

Table 3: Ablation experiments for FoX. We use 360M-parameter models trained on 7.5B tokens on LongCrawl64. The perplexity is measured over a validation context length of 16384 tokens. For the bottom half, all addition (+) or removal (-) of components are relative to FoX (Pro).

Model	RoPE	Forget gate	QK-norm	Output gate	Output norm	KV-shift	Perplexity	\sim FoX (LLaMA) + RoPE
Transformer (LLaMA) w/o RoPE							29.30	
Transformer (LLaMA)	\checkmark						7.49	
	\checkmark	\checkmark					7.19	
FoX (LLaMA)		\checkmark					7.25	
		\checkmark	\checkmark				7.08	$\sim \Gamma_{\rm e} V (I I = N (A))$
		\checkmark	\checkmark	\checkmark			6.88	FOX (LLAMA)
		\checkmark	\checkmark	\checkmark	\checkmark		6.80	
FoX (Pro)		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	6.62	
- QK-norm		✓		1	✓	\checkmark	6.79	
- output gate		\checkmark	\checkmark		\checkmark	\checkmark	6.86	
- output norm		\checkmark	\checkmark	\checkmark		\checkmark	6.69	FOX (Pro)
- KV-shift		\checkmark	\checkmark	\checkmark	\checkmark		6.80	
+ RoPE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	6.63	
- forget gate + RoPE (i.e. Transformer (Pro))			\checkmark	\checkmark	\checkmark	\checkmark	6.82	\sim FoX (Pro) + RoPE
- forget gate			\checkmark	\checkmark	\checkmark	\checkmark	7.40	

Data-Independent Forget Gate

• Data-dependent:

•
$$f_t^{(h)} = \sigma(w_f^{(h)}x_t + b_f^{(h)})$$

• Data-independent:

•
$$f_t^{(h)} = \sigma(b_f^{(h)})$$

• Fixed (equivalent to ALiBi):

•
$$f_t^{(h)} = \sigma(b_f^{(h)})$$
, with fixed $b_f^{(h)}$

Data-Independent Forget Gate

- (T_{\min}, T_{\max}) such that

• For data-indep and fixed forget gates, $\{b_f^{(h)}\}_{h=1}^H$ are initialized with two hparams

• Fixed forget gates initialized with (T_{\min}, T_{\max}) is equivalent to ALiBi with maximum slope $\frac{1}{T_{\min}}$ and minimum slope $\frac{1}{T_{\max}}$

Data-Dependent vs Data-Independent vs Fixed

- We fix $T_{\min} = 2$ and vary T_{\max}
- Data-dependent forget gates always the best, and hyperparameter-free.

Future Directions

Future directions

- Try FoX at larger scales
- Make this bi-directional
- Long-context fine-tuning: should be great because
 - Forget gates are learnable and data-dependent: should adapt quickly
 - FoX has better length extrapolation: stable and faster learning during fine-tuning
- Adding forget gates to **pretrained models** (e.g., LLaMA3), and the finetune
 - It should adapt quickly
- Saving computation based on forget gate values (work in progress).

• If a head only uses a local context, no need to waste compute on distant tokens (they don't affect the output anyways)

Figure 27: Visualization of the forget gate weight matrix F from 16 heads in 4 different layers. These results use FoX (Pro).

Many Heads Are Local

Figure 28: Visualization of the attention score matrix *A* from 16 heads in 4 different layers. These results use FoX (Pro).

Adaptive Block Skipping

$$o_{i} = \frac{\sum_{j=1}^{i} \exp(q_{i}^{\mathsf{T}} k_{j} + d_{ij}) v_{j}}{\sum_{j=1}^{i} \exp(q_{i}^{\mathsf{T}} k_{j} + d_{ij})}$$

• $d_{ii} = 0$ by definition. So if d_{ij} is very negative for some $j \neq i$, we can safely ignore $\exp(q_i^{\dagger}k_j + d_{ij})v_j$

• Guaranteed to lossless if $q_i^{\top}k_j$ is bounded, which is true if we use QK-norm.

- 125M model, 16K training context lengths, 30% throughput improvement
 - Saved attention FLOPs should be way larger than 30%.

$$d_{ij} = c_{i} - c_{j}, \text{ where}$$
$$c_{i} = \sum_{l=1}^{l} \log f_{l}$$

Thanks!

References

- Klaus Greff, Rupesh K Srivastava, Jan Koutn'ık, Bas R Steunebrink, and J"urgen Schmidhuber. Lstm: A search space odyssey. IEEE transactions on neural networks and learning systems, 28(10): 2222–2232, 2016.
- Jos Van Der Westhuizen and Joan Lasenby. The unreasonable effectiveness of the forget gate. arXiv preprint arXiv:1804.04849, 2018.
- Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention transformers with hardwareefficient training. arXiv preprint arXiv:2312.06635, 2023.
- Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv preprint arXiv:2312.00752, 2023. • Jacob Buckman, Carles Gelada, and Sean Zhang. Symmetric Power Transformers, 2024.
- Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A Smith, and Lingpeng Kong. Random feature attention. arXiv preprint arXiv:2103.02143, 2021.
- Choromanski, Krzysztof, et al. "Rethinking attention with performers." arXiv preprint arXiv:2009.14794 (2020).
- Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transformers with the delta rule over sequence length. arXiv preprint arXiv:2406.06484, 2024.
- Schlag, Imanol, Kazuki Irie, and Jürgen Schmidhuber. "Linear transformers are secretly fast weight programmers." International Conference on Machine Learning. PMLR, 2021.
- Munkhdalai, Tsendsuren, et al. "Metalearned neural memory." Advances in Neural Information Processing Systems 32 (2019).

References

- S4: Gu, Albert, Karan Goel, and Christopher Ré. "Efficiently modeling long sequences with structured state spaces." arXiv preprint arXiv:2111.00396 (2021).
- S5: Smith, Jimmy TH, Andrew Warrington, and Scott W. Linderman. "Simplified state space layers for sequence modeling." arXiv preprint arXiv:2208.04933 (2022).
- LRU: Orvieto, Antonio, et al. "Resurrecting recurrent neural networks for long sequences." International Conference on Machine Learning. PMLR, 2023.
- HGRN: Qin, Zhen, Songlin Yang, and Yiran Zhong. "Hierarchically gated recurrent neural network for sequence modeling." Advances in Neural Information Processing Systems 36 (2024). • Mega: Ma, Xuezhe, et al. "Mega: moving average equipped gated attention." arXiv preprint arXiv:2209.10655 (2022).
- RG-LRU: De, Soham, et al. "Griffin: Mixing gated linear recurrences with local attention for efficient language models." arXiv preprint arXiv:2402.19427 (2024).
- Gated RFA: Peng, Hao, et al. "Random feature attention." *arXiv preprint arXiv:2103.02143* (2021).
- RWKV-4: Peng, Bo, et al. "Rwkv: Reinventing rnns for the transformer era." arXiv preprint arXiv:2305.13048 (2023).
- linear attention: Katharopoulos, Angelos, et al. "Transformers are rnns: Fast autoregressive transformers with linear attention." International conference on machine learning. PMLR, 2020.
- GLA: Yang, Songlin, et al. "Gated linear attention transformers with hardware-efficient training." arXiv preprint arXiv:2312.06635 (2023).
- Mamba-2: Dao, Tri, and Albert Gu. "Transformers are SSMs: Generalized models and efficient algorithms through structured state space duality." arXiv preprint arXiv:2405.21060 (2024). • RetNet: Sun, Yutao, et al. "Retentive network: A successor to transformer for large language models." arXiv preprint arXiv:2307.08621 (2023).
- HGRN2: Qin, Zhen, et al. "Hgrn2: Gated linear rnns with state expansion." arXiv preprint arXiv:2404.07904 (2024).
- RWKV-6: Peng, Bo, et al. "Eagle and finch: Rwkv with matrix-valued states and dynamic recurrence." arXiv preprint arXiv:2404.05892 (2024).
- xLSTM: Beck, Maximilian, et al. "xLSTM: Extended Long Short-Term Memory." arXiv preprint arXiv:2405.04517 (2024).
- ALiBi: Press, Ofir, Noah A. Smith, and Mike Lewis. "Train short, test long: Attention with linear biases enables input length extrapolation." arXiv preprint arXiv:2108.12409 (2021).
- RoPE: Su, Jianlin, et al. "Roformer: Enhanced transformer with rotary position embedding." *Neurocomputing* 568 (2024): 127063.
- Gated DeltaNet: Yang, Songlin, Jan Kautz, and Ali Hatamizadeh. "Gated Delta Networks: Improving Mamba2 with Delta Rule." arXiv preprint arXiv:2412.06464 (2024).
- SBA: Tan, Shawn, et al. "Stick-breaking Attention." *arXiv preprint arXiv:2410.17980* (2024).

