Scaling Context Requires Rethinking Attention

Jacob Buckman Carles Gelada Sean Zhang

July 2025

Why did transformers win?

- GPU-friendly
- State gets large

Why did transformers win?

- GPU-friendly
- State gets large

Classic RNNs are not GPU-friendly

Why did transformers win?

- GPU-friendly
- State gets large

Parameter scaling is well understood

State scaling works the same

Transformers have far larger states:

LSTM O(ld)

Attention O(ldt)

Why did transformers win?

- GPU-friendly
- State gets large

Why will transformers lose?

• State gets too large

...when we train at long context.

Weight-state FLOP ratio (WSFR) should be balanced!

Weight-State FLOPs Balance

Sliding window attention seems to fix balance

Vanilla Attention

Sliding Window Attention

Effective Context Length

(Mistral et al 2023)

...but windowed attention performs worse than an RNN at equivalent state sizes

In-context learning curve on negative log likelihood:

Other ways to fix balance of transformer?

State shape: [layers, time, heads, features]

hybrid shrinks this

gqa shrinks this

latent attention shrinks this

RNNs seem to outperform regardless

Can we find an RNN that is

- GPU-friendly?
- Large state?

Can we find an RNN that is

- GPU-friendly?
- Large state?

From attention

$$\operatorname{attn}_{\exp}(Q, K, V) = \left(\exp(QK^T) \odot M\right) V$$

to linear attention

$$\operatorname{attn}_{\operatorname{lin}}^{\phi}(Q, K, V) = \left(\phi(Q)\phi(K)^{T} \odot M\right) V$$

with state embedding $\phi: \mathbb{R}^d \to \mathbb{R}^D$

Linear attention

$$\operatorname{attn}_{\operatorname{lin}}^{\phi}(Q, K, V) = \left(\phi(Q)\phi(K)^{T} \odot M\right) V$$

has an equivalent recurrent form

$$\operatorname{attn}_{\operatorname{lin}}^{\phi}(Q, K, V)_i = S_i \phi(Q_i)$$
 $S_i = S_{i-1} + V_i \phi(K_i)^T$

Attention form + recurrent form -> chunk-wise form

output

attention on c elements

$$Y_{(i)_c} = \frac{S_{ci}Q_{(i)_c}}{S_{ci}Q_{(i)_c}} + V_{(i)_c} \left(Q_{(i)_c}K_{(i)_c}^T \odot M\right)$$

influence from past

$$S_{c(i+1)} = S_{ci} + V_{(i)_c} K_{(i)_c}^T$$

influence on future

Chunk-wise, RNNs are GPU-friendly!

Can we find an RNN that is

•GPU-friendly?

• Large state?

Sliding windowed attention shrinks a KV cache.

What if instead we enlarge an RNN state?

$$\phi: \mathbb{R}^d \to \mathbb{R}^D$$

From attention

$$\operatorname{attn}_{\exp}(Q, K, V) = \left(\exp(QK^T) \odot M\right) V$$

to power attention

$$\operatorname{attn}_{\operatorname{pow}}^{p}(Q, K, V) = \left(\left(QK^{T} \right)^{p} \odot M \right) V$$

Let
$$\phi = \mathrm{TPOW}_p(x) = \begin{bmatrix} x_1 \cdots x_1 \\ x_1 \cdots x_2 \\ \vdots \\ x_d \cdots x_d \end{bmatrix} = \begin{bmatrix} \vdots \\ \prod_k x_{i_k} \\ \vdots \\ (i_1, \cdots, i_p) \in \mathbb{N}_d^{\times p} \end{bmatrix}$$

(outer product of x with itself, p times)

Then:
$$\phi(Q_i)^T\phi(K_j)=\left(Q_i^TK_j\right)^p$$

...so power attention is linear attention!

$$\operatorname{attn}_{\mathrm{pow}}^p(Q,K,V) \,= \left((QK^T)^p \odot M \right) \, V = \left(\phi(Q) \phi(K)^T \odot M \right) V \,\, = \,\, \operatorname{attn}_{\mathrm{lin}}^\phi(Q,K,V)$$

We can find even better embeddings!

TPOW produces a symmetric tensor

$$x = [a, b, c]$$

$$TPOW_2(x) = [aa, ab, ac ab, bb, bc ac, bc, cc]$$

SPOW produces unique elements of that tensor...

$$SPOW_2(x) = [aa, ab, ac, bb, bc, cc]$$

...scaled by coefficients based on the count:

$$\operatorname{SPOW}_2\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1x_1 \\ \sqrt{2} & x_1x_2 \\ x_2x_2 \end{bmatrix} \qquad \operatorname{SPOW}_3\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1x_1x_1 \\ \sqrt{3} & x_1x_1x_2 \\ \sqrt{3} & x_1x_2x_2 \\ x_2x_2x_2 \end{bmatrix}$$

which gives:

- 1. The dimensionality D is given by $\binom{d+p-1}{p}$ (the binomial n choose k)
- 2. The inner products $SPOW_p(q)^TSPOW_p(k) = (q^T k)^p$

p	$\mathrm{TPOW}\ D$	$spow\ D$	Savings
2	4096	2080	49%
3	262144	45760	82%
4	16777216	766480	95%
5	1073741824	10424128	99%
6	68719476736	119877472	99.8%

Recap:

Linear attention + ϕ = power-p attention

Can be computed chunk-wise in O(t) FLOPs

State size can be expanded independent of params with p:

p	$\mathrm{spow}\ D$
2	2080
3	45760
4	766480
5	10424128
6	119877472

Can we find an RNN that is

• GPU-friendly?

• Large state?

Time to see power attention in action...

Power attention balances the WSFR

Power attention in-context learning is better than equivalent windowed attention

(a) Window-1k attention.

(b) p = 2 power attention.

(c) Close-up on ICL curves at 50k.

Power attention scales with conventional axes

(a) Gradient updates. (b) Documents per batch. (c) Parameter count.

Power attention dominates on long-context training

2.8
2.6
2.4
2.2
2.0
1.8
10²
10³
10⁴
Context Position

(a) Heldout best-context loss across training.

(b) ICL after 3e8 TeraFLOPs.

Trend holds at scale (1.5B parameters, 32k context)

Hardware-aware kernels available open-source: https://github.com/m-a-n-i-f-e-s-t/power-attention

FLA pull request coming soon!

The San Francisco Compute Company

for supporting our work

contact: jacob@manifestai.com

https://github.com/m-a-n-i-f-e-s-t/power-attention

