# Scaling Context Requires Rethinking Attention

Jacob Buckman Carles Gelada Sean Zhang

July 2025

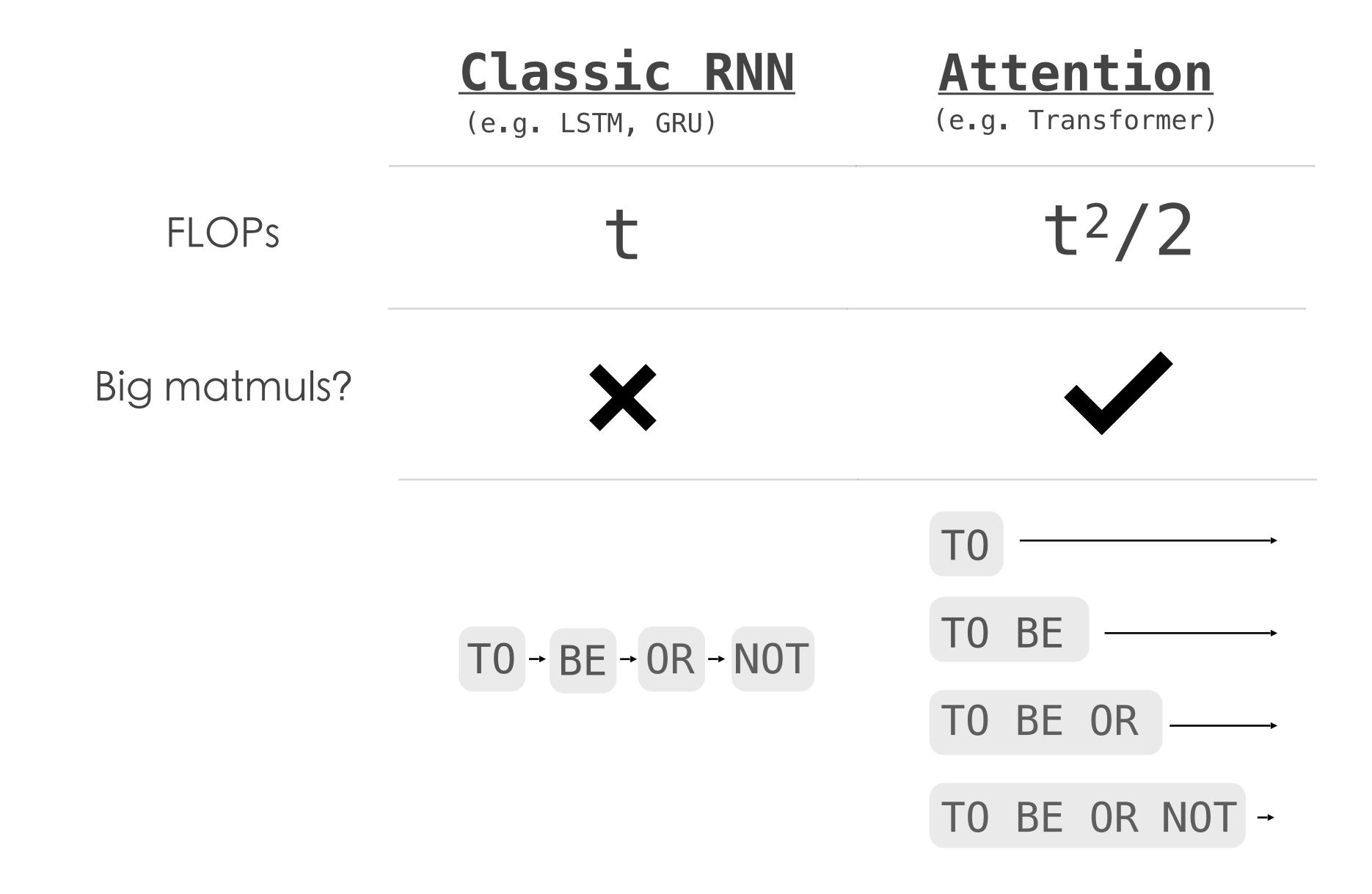


# Why did transformers win?

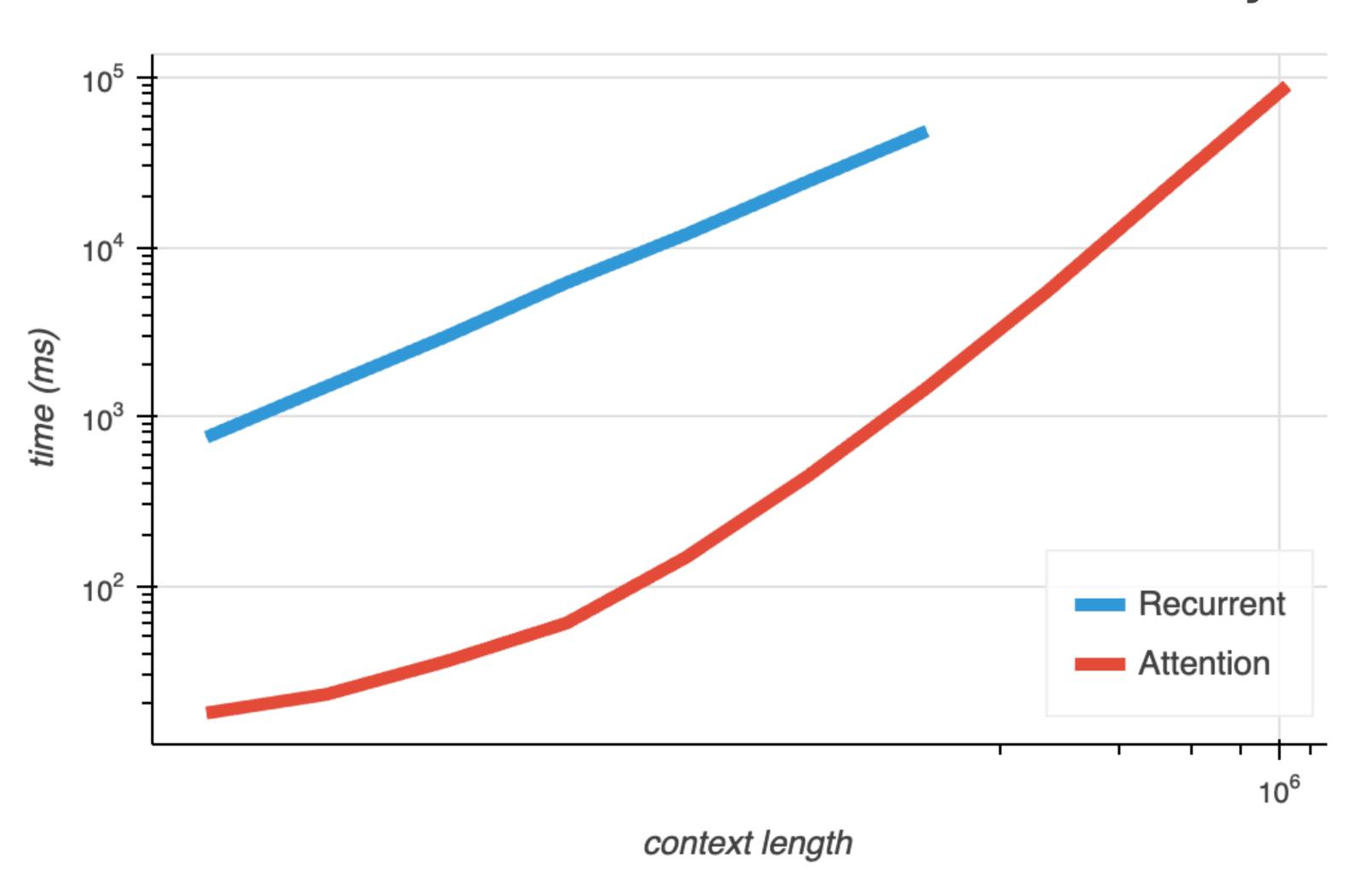
- GPU-friendly
- State gets large

# Why did transformers win?

- GPU-friendly
- State gets large

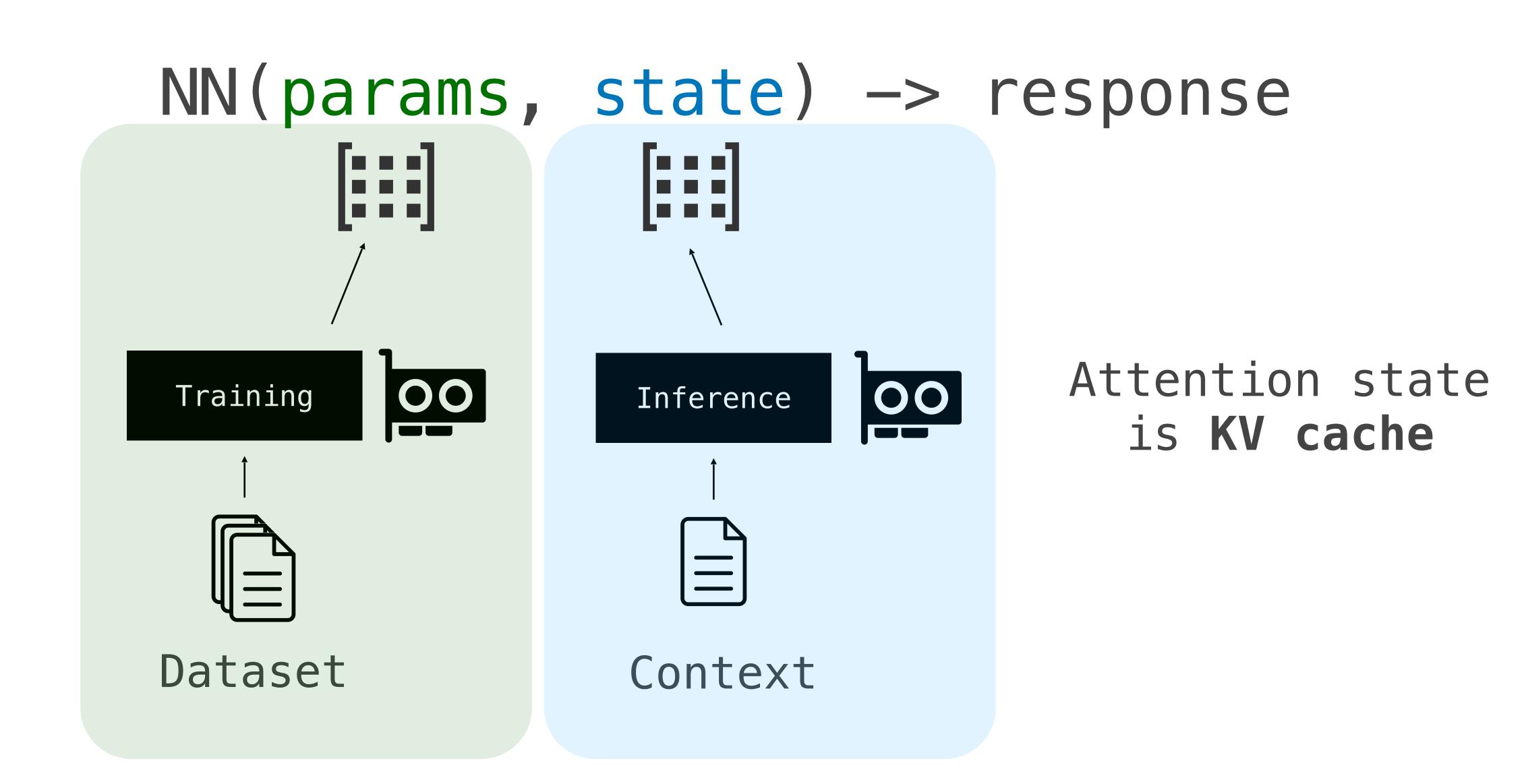


## Classic RNNs are not GPU-friendly

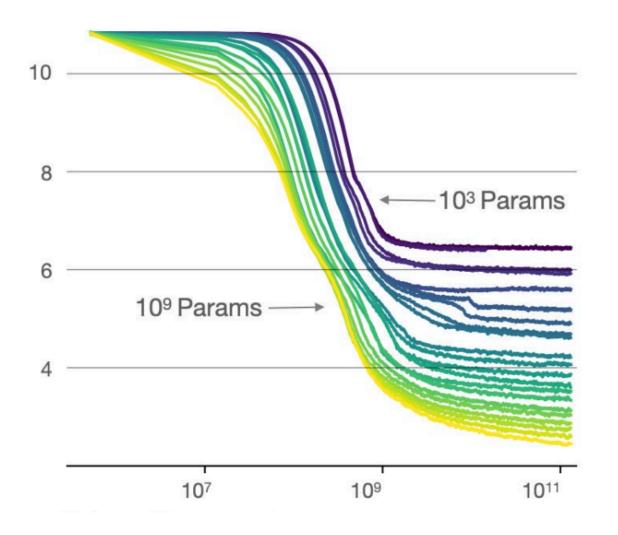


# Why did transformers win?

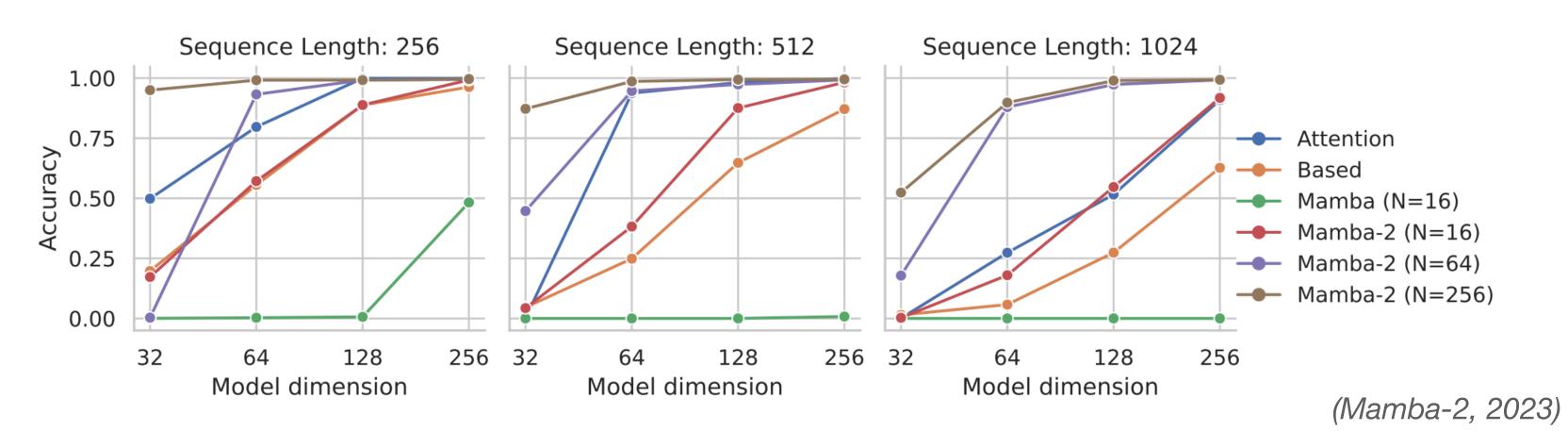
- GPU-friendly
- State gets large



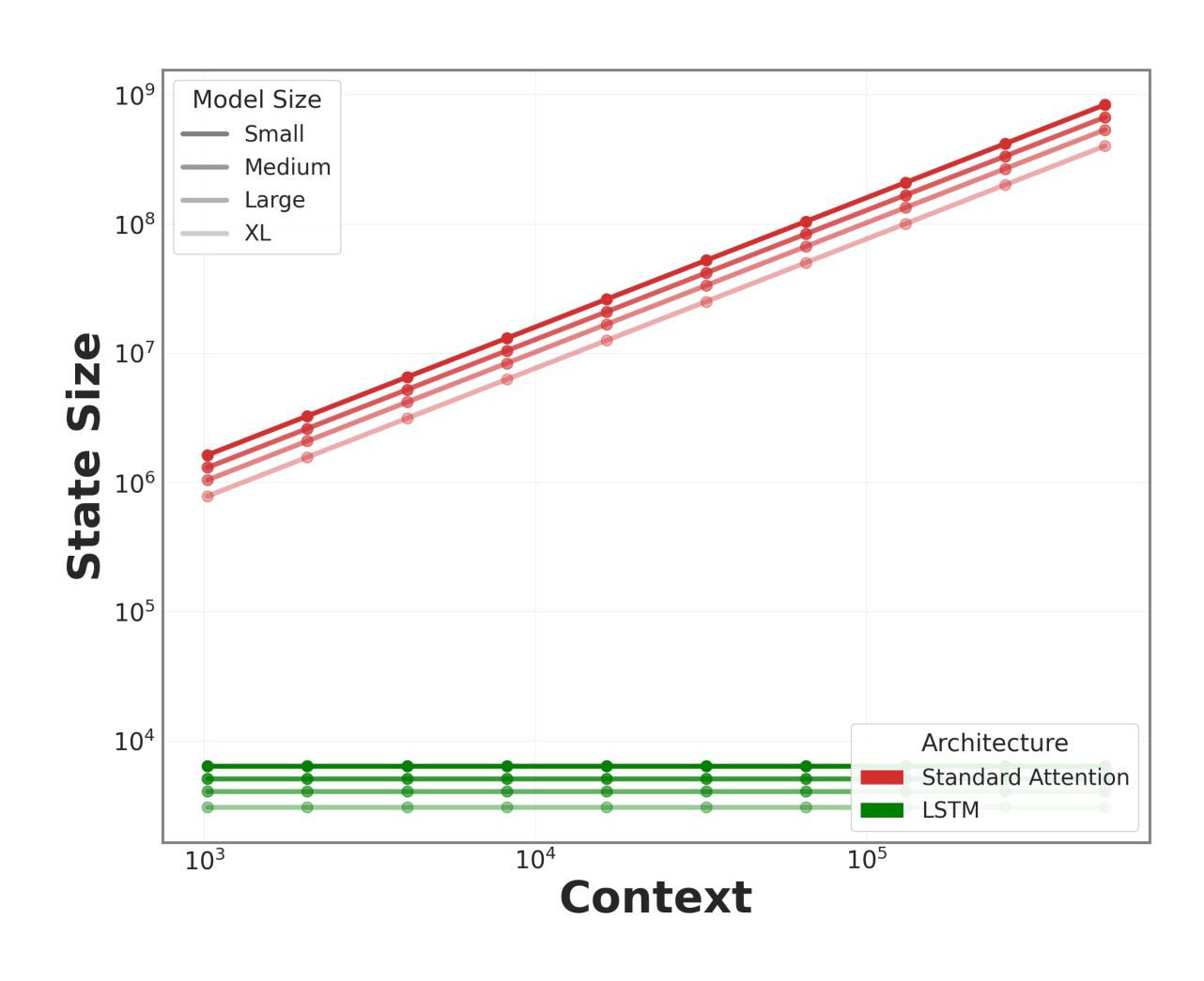
## Parameter scaling is well understood



## State scaling works the same



## Transformers have far larger states:



LSTM O(ld)

Attention O(ldt)

# Why did transformers win?

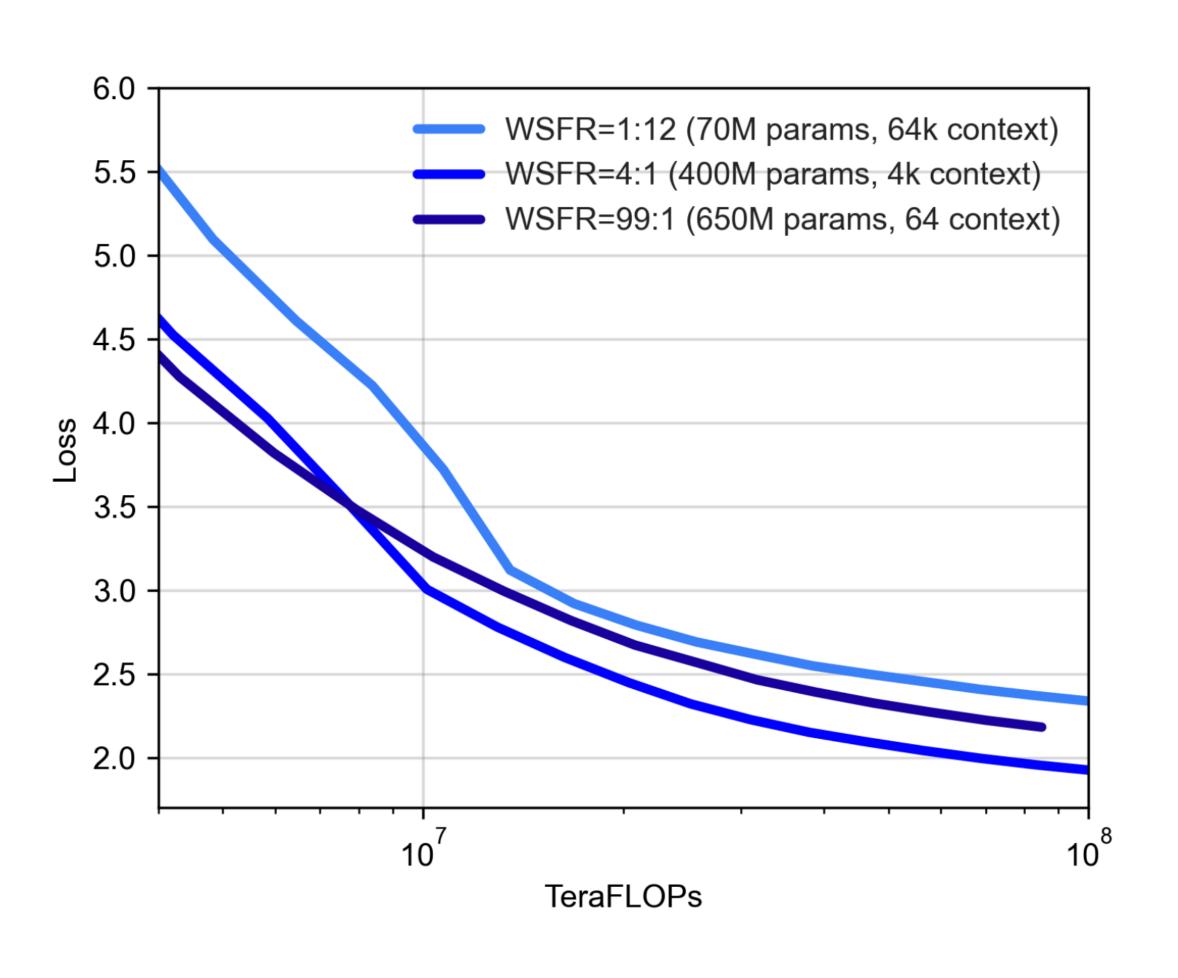
- GPU-friendly
- State gets large

## Why will transformers lose?

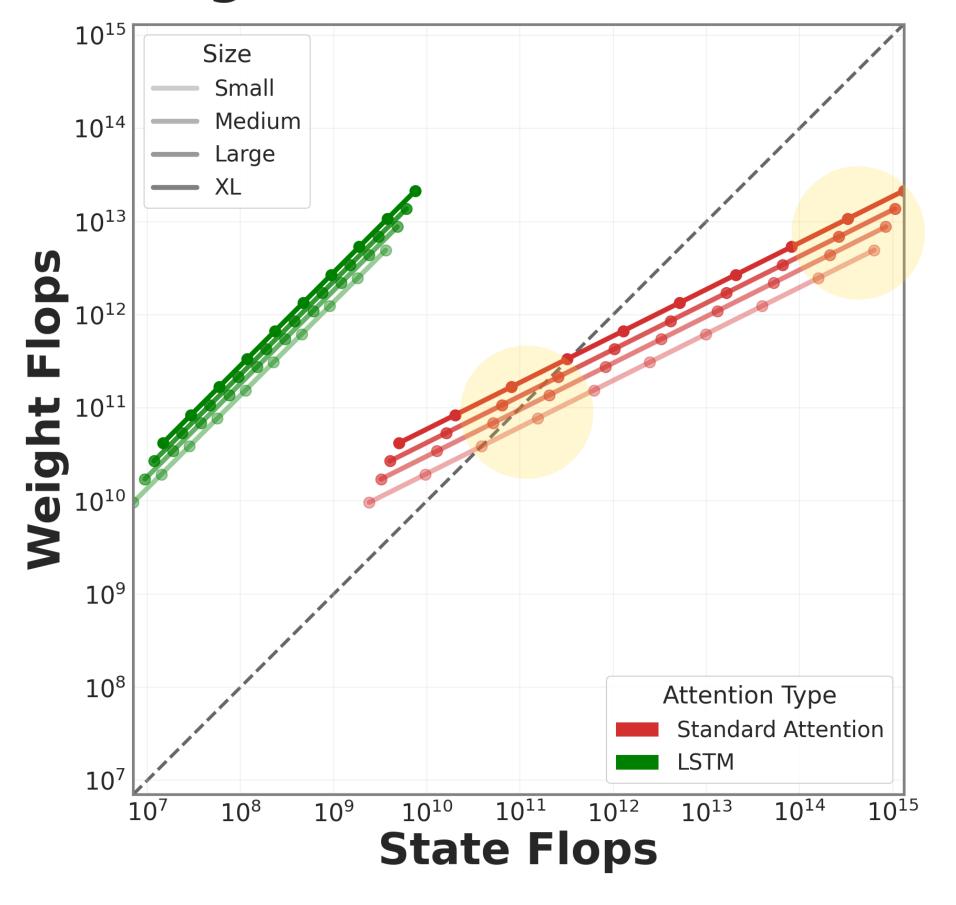
• State gets too large

...when we train at long context.

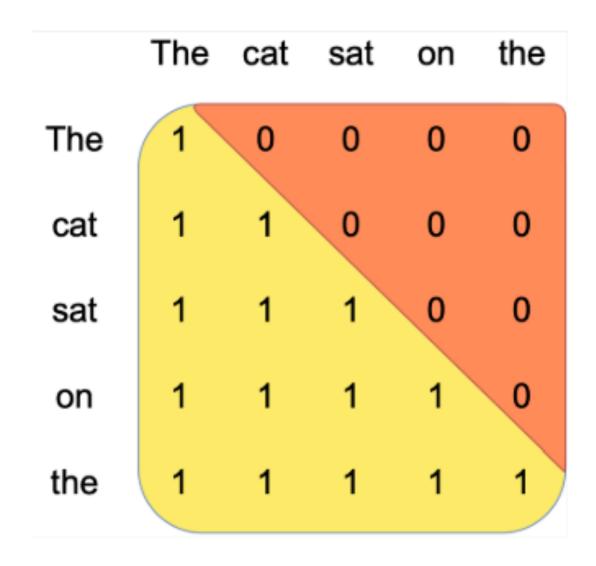
## Weight-state FLOP ratio (WSFR) should be balanced!



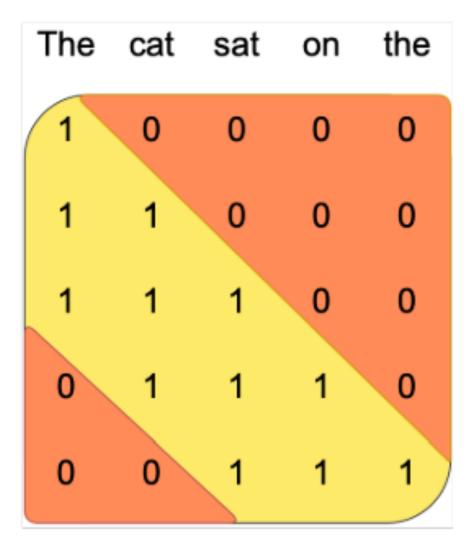
#### **Weight-State FLOPs Balance**



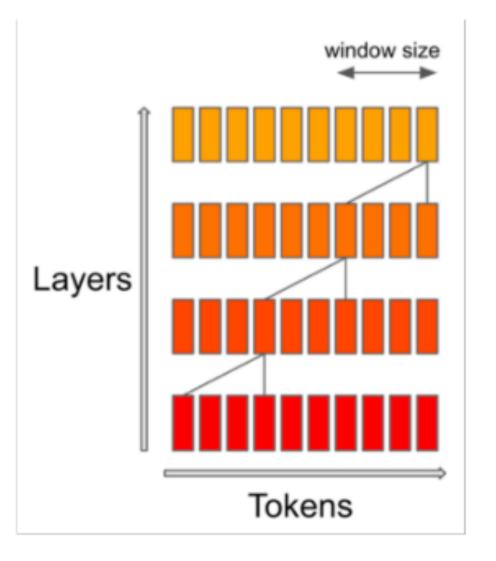
## Sliding window attention seems to fix balance



Vanilla Attention



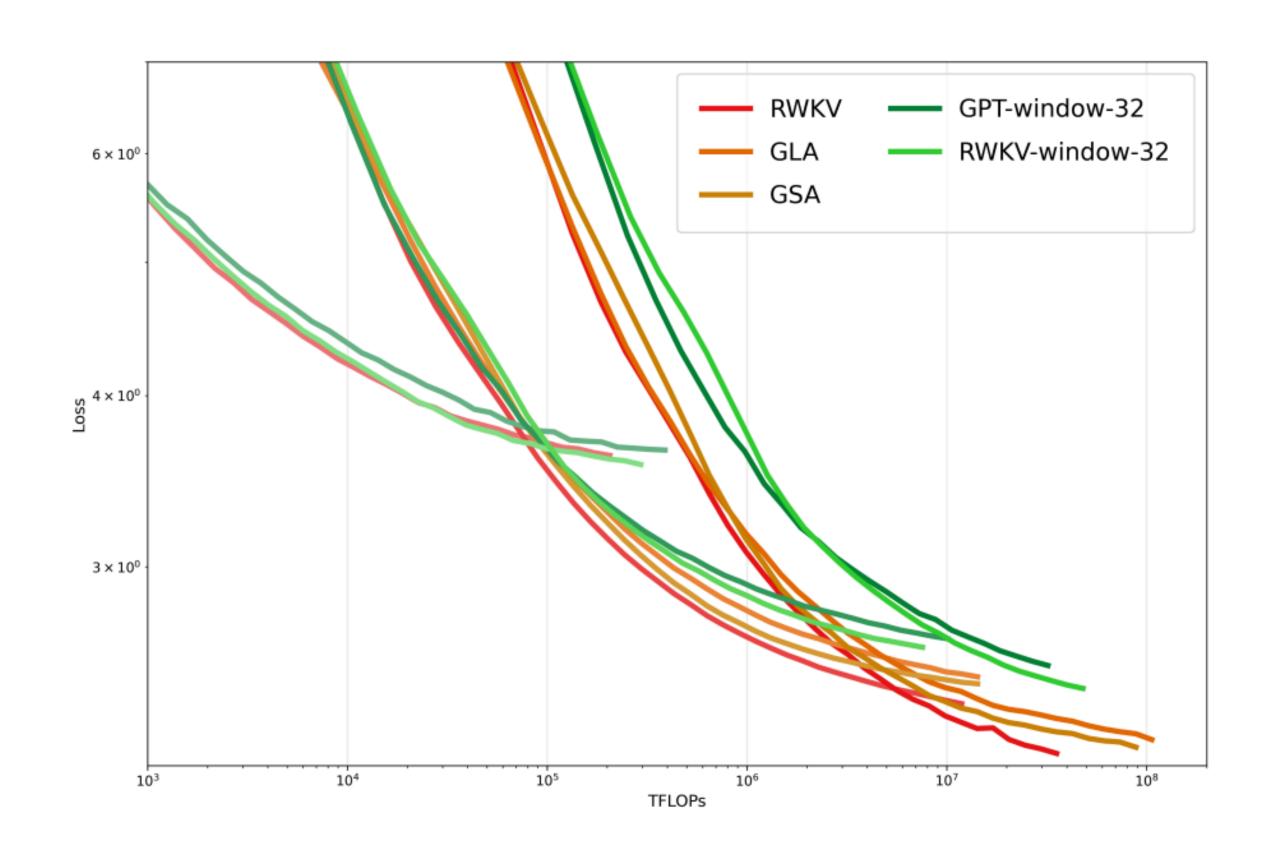
Sliding Window Attention



**Effective Context Length** 

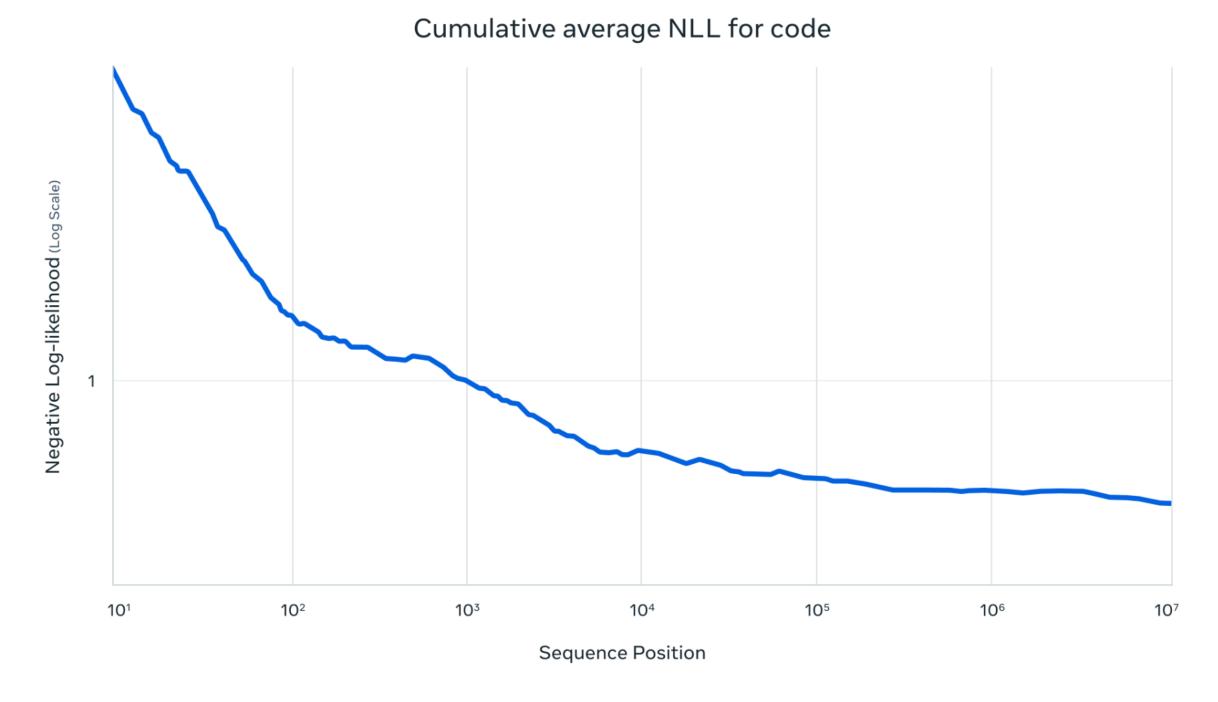
(Mistral et al 2023)

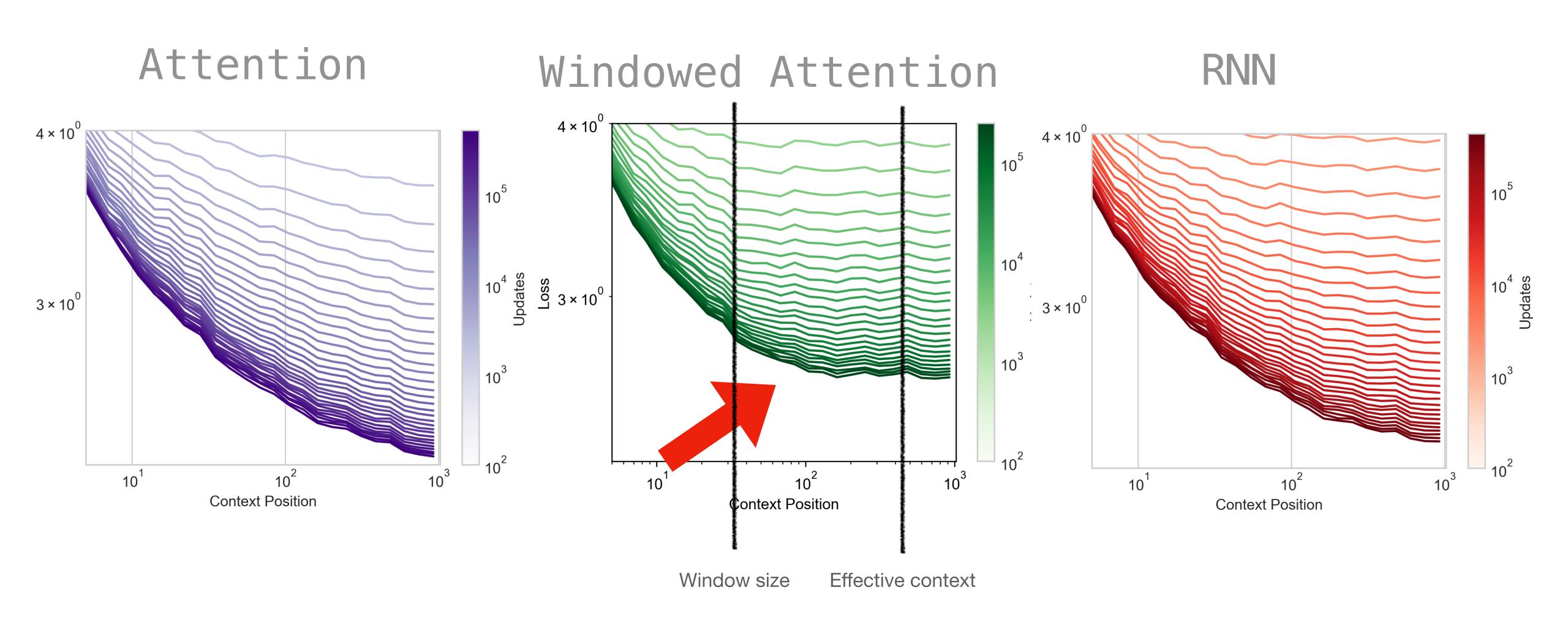
# ...but windowed attention performs worse than an RNN at equivalent state sizes



## In-context learning curve on negative log likelihood:







Other ways to fix balance of transformer?

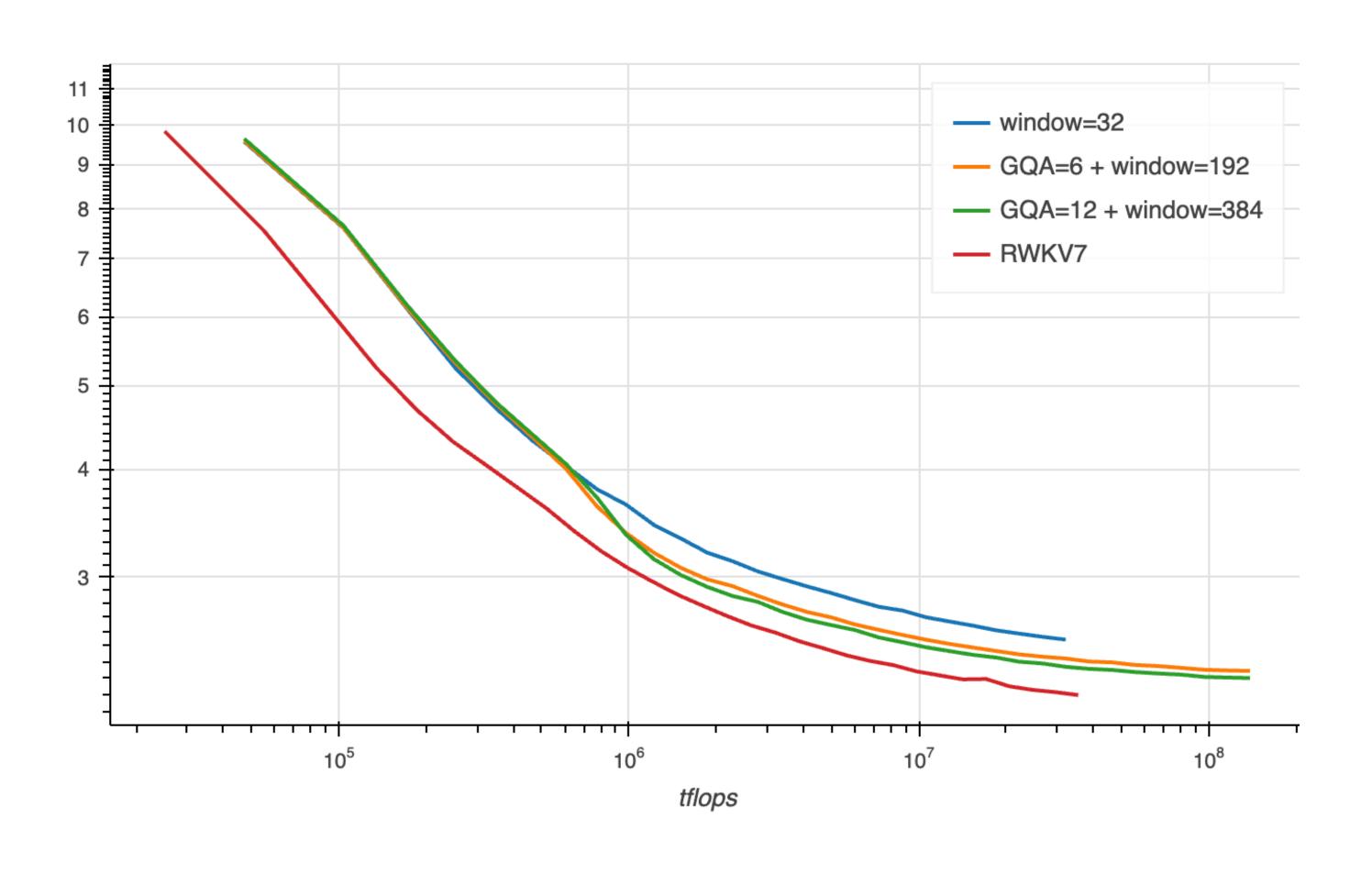
State shape: [layers, time, heads, features]

hybrid shrinks this

gqa shrinks this

latent attention shrinks this

## RNNs seem to outperform regardless

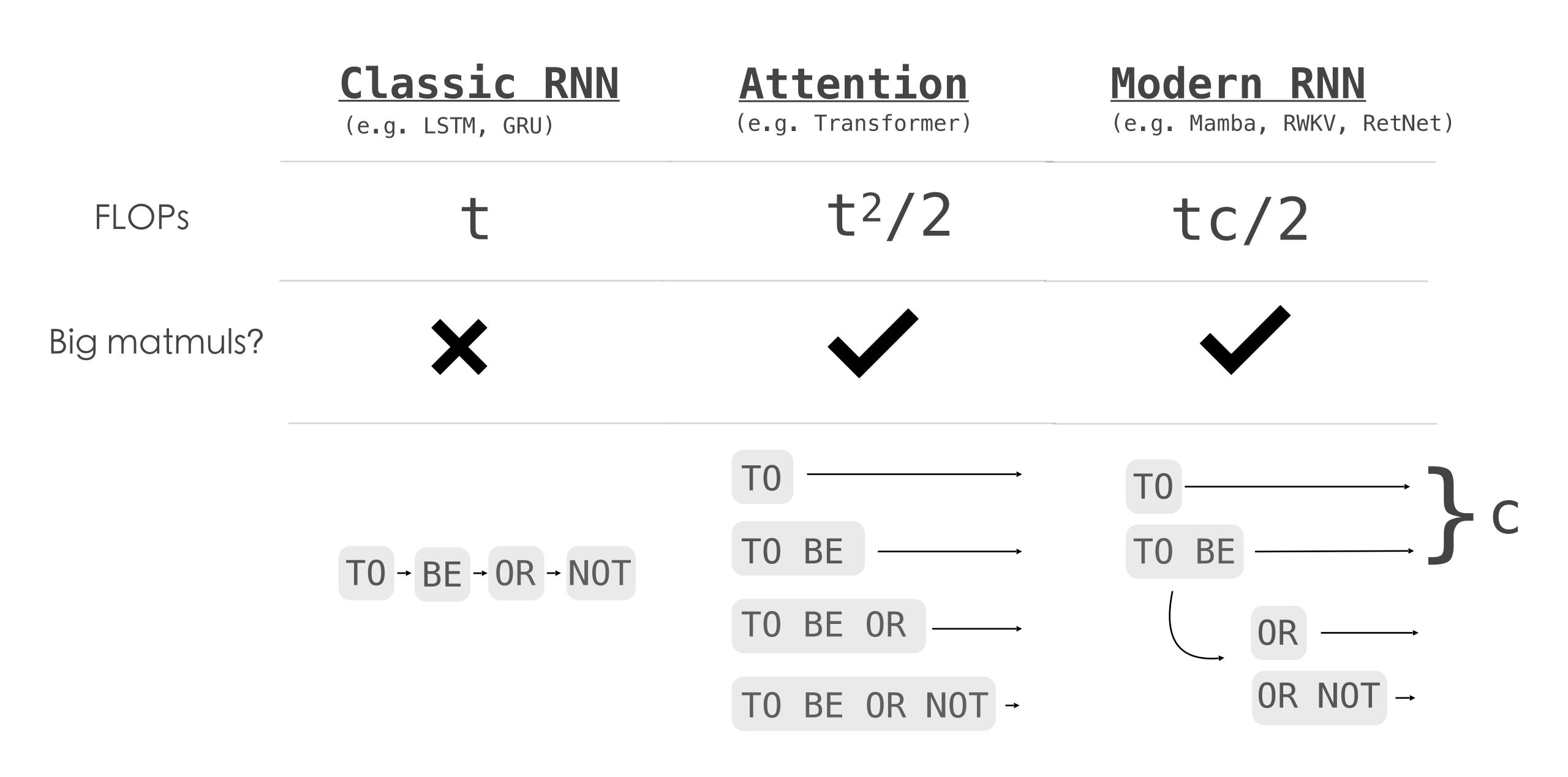


## Can we find an RNN that is

- GPU-friendly?
- Large state?

## Can we find an RNN that is

- GPU-friendly?
- Large state?



From attention

$$\operatorname{attn}_{\exp}(Q, K, V) = \left(\exp(QK^T) \odot M\right) V$$

to linear attention

$$\operatorname{attn}_{\operatorname{lin}}^{\phi}(Q, K, V) = \left(\phi(Q)\phi(K)^{T} \odot M\right) V$$

with state embedding  $\phi: \mathbb{R}^d \to \mathbb{R}^D$ 

Linear attention

$$\operatorname{attn}_{\operatorname{lin}}^{\phi}(Q, K, V) = \left(\phi(Q)\phi(K)^{T} \odot M\right) V$$

has an equivalent recurrent form

$$\operatorname{attn}_{\operatorname{lin}}^{\phi}(Q, K, V)_i = S_i \phi(Q_i)$$
  $S_i = S_{i-1} + V_i \phi(K_i)^T$ 

Attention form + recurrent form -> chunk-wise form

output

attention on c elements

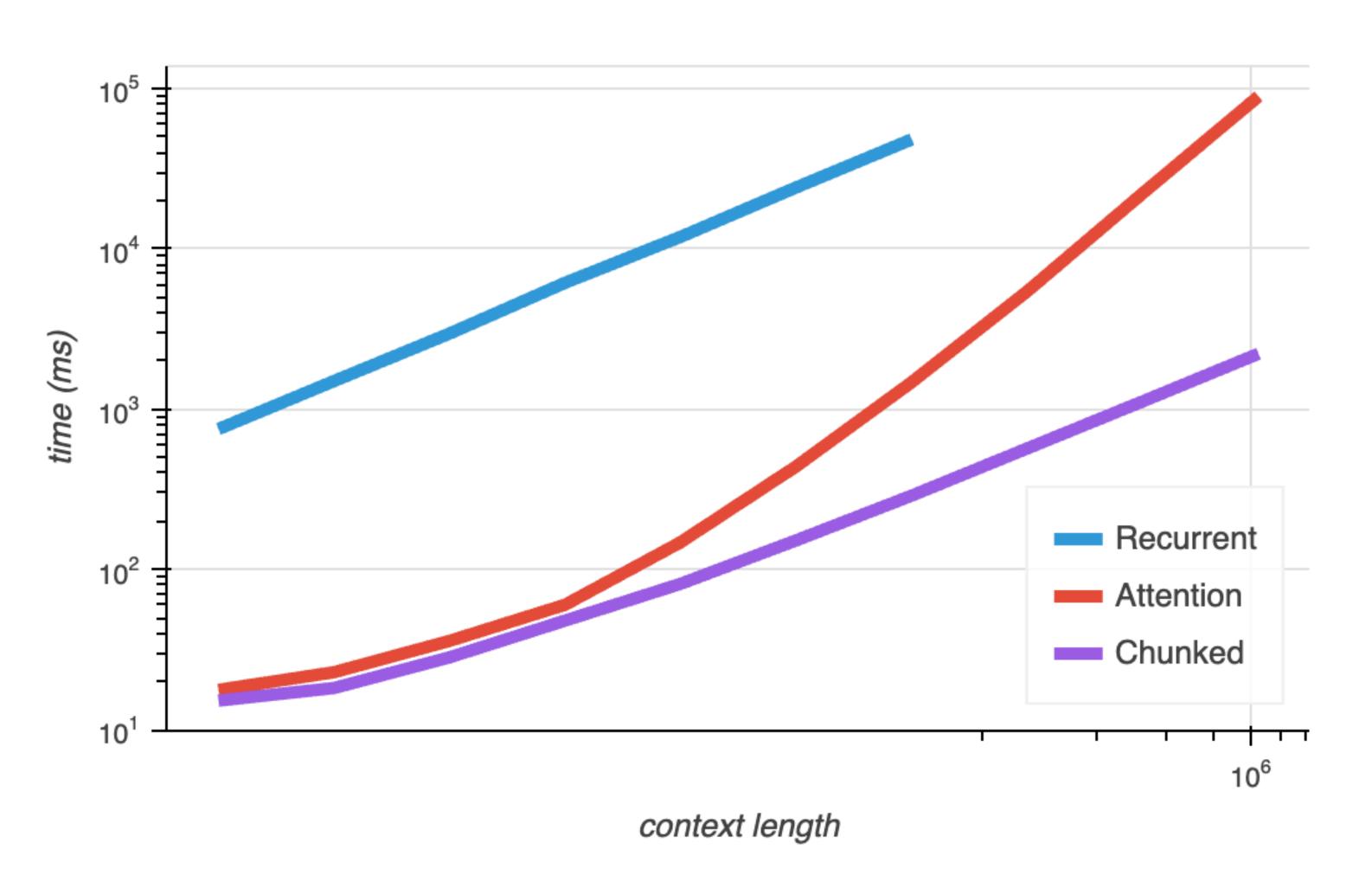
$$Y_{(i)_c} = \frac{S_{ci}Q_{(i)_c}}{S_{ci}Q_{(i)_c}} + V_{(i)_c} \left(Q_{(i)_c}K_{(i)_c}^T \odot M\right)$$

influence from past

$$S_{c(i+1)} = S_{ci} + V_{(i)_c} K_{(i)_c}^T$$

influence on future

## Chunk-wise, RNNs are GPU-friendly!



## Can we find an RNN that is

•GPU-friendly?

• Large state?

Sliding windowed attention shrinks a KV cache.

What if instead we enlarge an RNN state?

$$\phi: \mathbb{R}^d \to \mathbb{R}^D$$

From attention

$$\operatorname{attn}_{\exp}(Q, K, V) = \left(\exp(QK^T) \odot M\right) V$$

to power attention

$$\operatorname{attn}_{\operatorname{pow}}^{p}(Q, K, V) = \left( \left( QK^{T} \right)^{p} \odot M \right) V$$

Let 
$$\phi = \mathrm{TPOW}_p(x) = \begin{bmatrix} x_1 \cdots x_1 \\ x_1 \cdots x_2 \\ \vdots \\ x_d \cdots x_d \end{bmatrix} = \begin{bmatrix} \vdots \\ \prod_k x_{i_k} \\ \vdots \\ (i_1, \cdots, i_p) \in \mathbb{N}_d^{\times p} \end{bmatrix}$$

(outer product of x with itself, p times)

Then: 
$$\phi(Q_i)^T\phi(K_j)=\left(Q_i^TK_j\right)^p$$

...so power attention is linear attention!

$$\operatorname{attn}_{\mathrm{pow}}^p(Q,K,V) \,= \left( (QK^T)^p \odot M \right) \, V = \left( \phi(Q) \phi(K)^T \odot M \right) V \,\, = \,\, \operatorname{attn}_{\mathrm{lin}}^\phi(Q,K,V)$$

We can find even better embeddings!

TPOW produces a symmetric tensor

$$x = [a, b, c]$$

$$TPOW_2(x) = [aa, ab, ac ab, bb, bc ac, bc, cc]$$

SPOW produces unique elements of that tensor...

$$SPOW_2(x) = [aa, ab, ac, bb, bc, cc]$$

## ...scaled by coefficients based on the count:

$$\operatorname{SPOW}_2\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1x_1 \\ \sqrt{2} & x_1x_2 \\ x_2x_2 \end{bmatrix} \qquad \operatorname{SPOW}_3\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1x_1x_1 \\ \sqrt{3} & x_1x_1x_2 \\ \sqrt{3} & x_1x_2x_2 \\ x_2x_2x_2 \end{bmatrix}$$

### which gives:

- 1. The dimensionality D is given by  $\binom{d+p-1}{p}$  (the binomial n choose k)
- 2. The inner products  $SPOW_p(q)^TSPOW_p(k) = (q^T k)^p$

| p | $\mathrm{TPOW}\ D$ | $spow\ D$ | Savings |
|---|--------------------|-----------|---------|
| 2 | 4096               | 2080      | 49%     |
| 3 | 262144             | 45760     | 82%     |
| 4 | 16777216           | 766480    | 95%     |
| 5 | 1073741824         | 10424128  | 99%     |
| 6 | 68719476736        | 119877472 | 99.8%   |

#### Recap:

Linear attention +  $\phi$  = power-p attention

Can be computed chunk-wise in O(t) FLOPs

State size can be expanded independent of params with p:

| p | $\mathrm{spow}\ D$ |
|---|--------------------|
| 2 | 2080               |
| 3 | 45760              |
| 4 | 766480             |
| 5 | 10424128           |
| 6 | 119877472          |

## Can we find an RNN that is

• GPU-friendly?

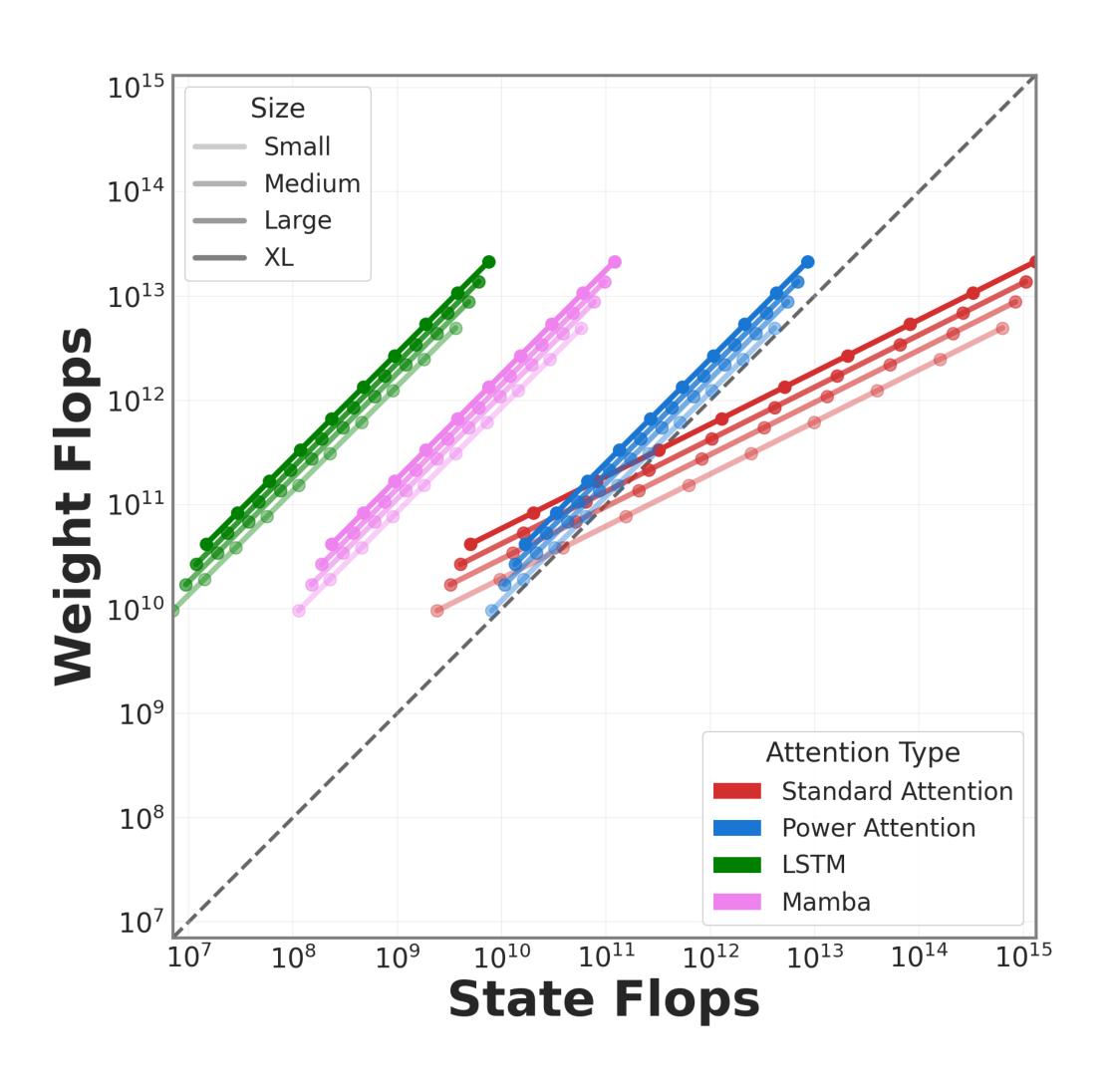


• Large state?

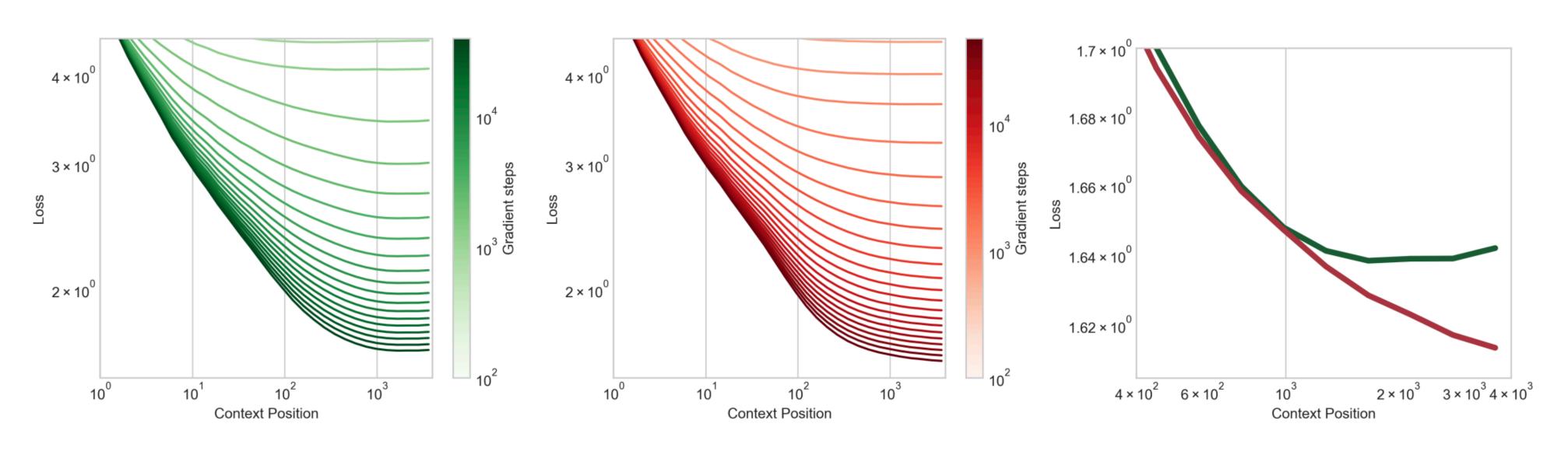


Time to see power attention in action...

#### Power attention balances the WSFR



# Power attention in-context learning is better than equivalent windowed attention

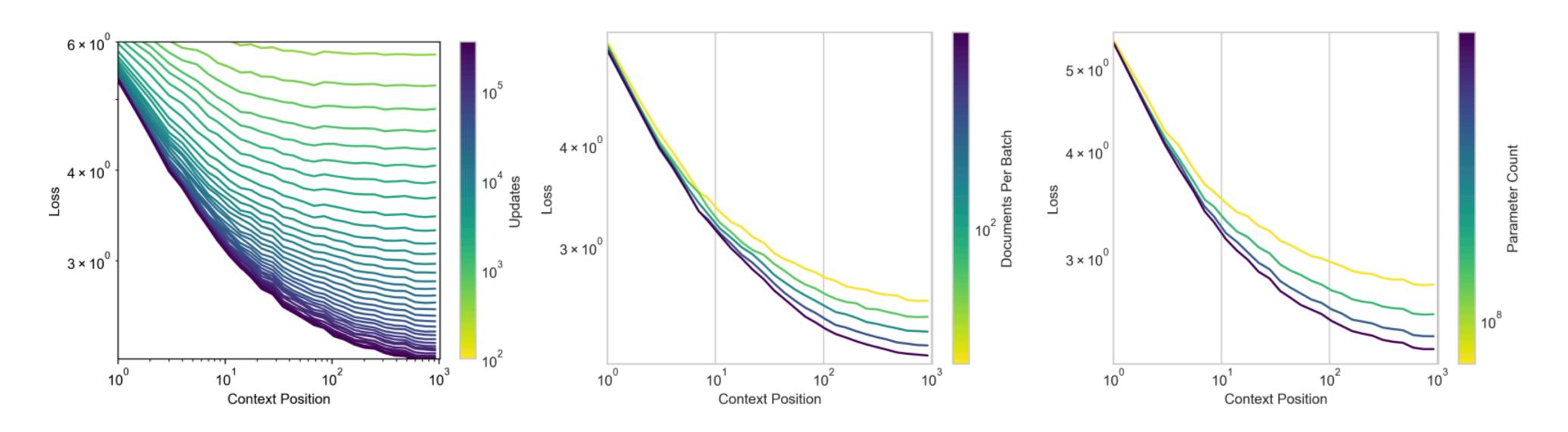


(a) Window-1k attention.

(b) p = 2 power attention.

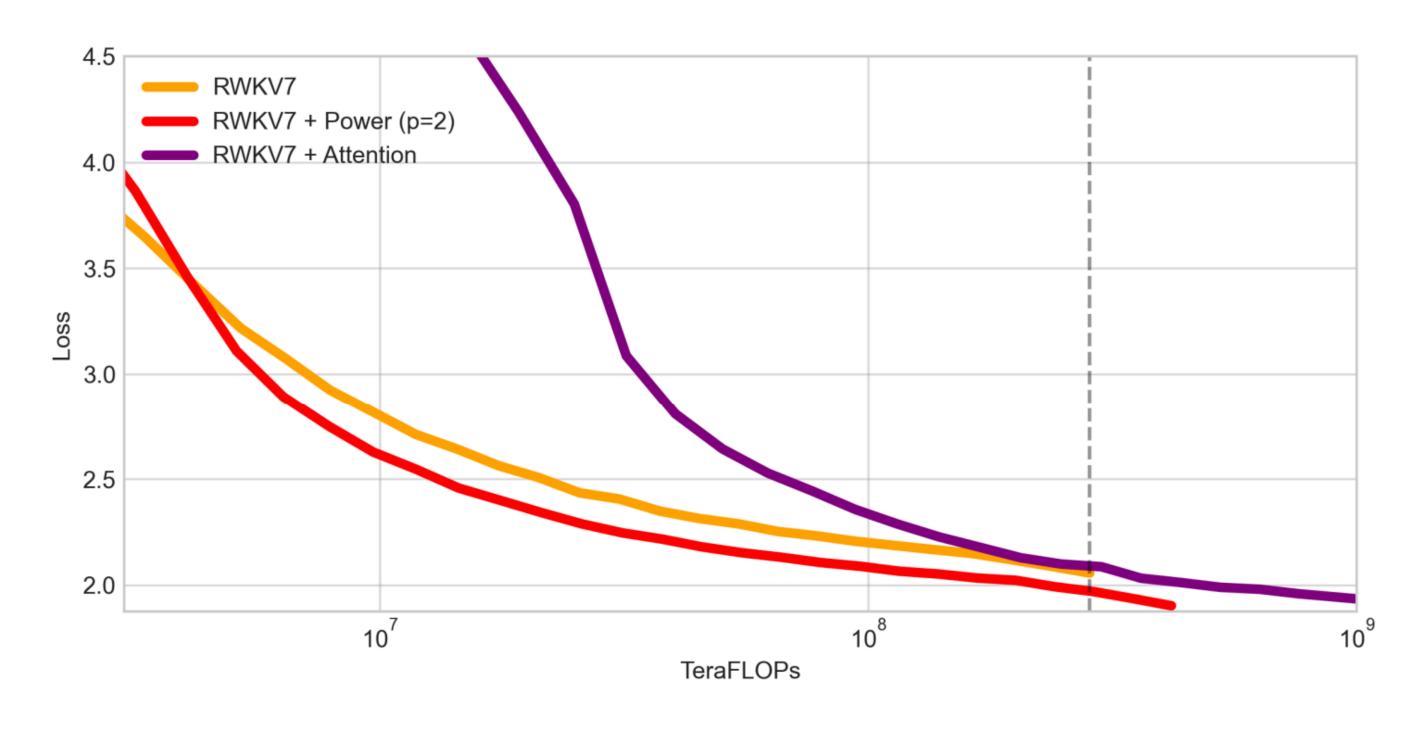
(c) Close-up on ICL curves at 50k.

Power attention scales with conventional axes



(a) Gradient updates. (b) Documents per batch. (c) Parameter count.

## Power attention dominates on long-context training

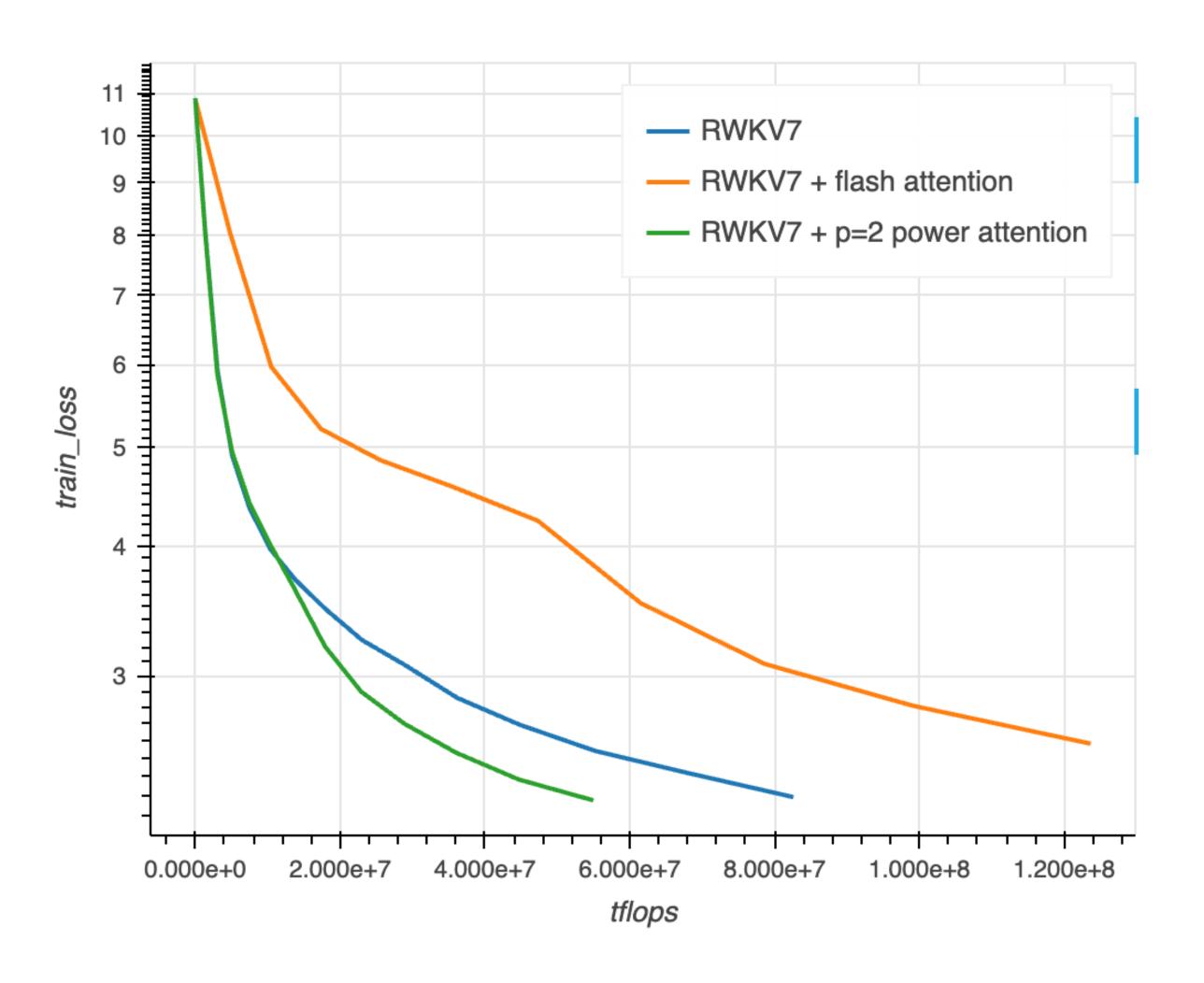


2.8
2.6
2.4
2.2
2.0
1.8
10<sup>2</sup>
10<sup>3</sup>
10<sup>4</sup>
Context Position

(a) Heldout best-context loss across training.

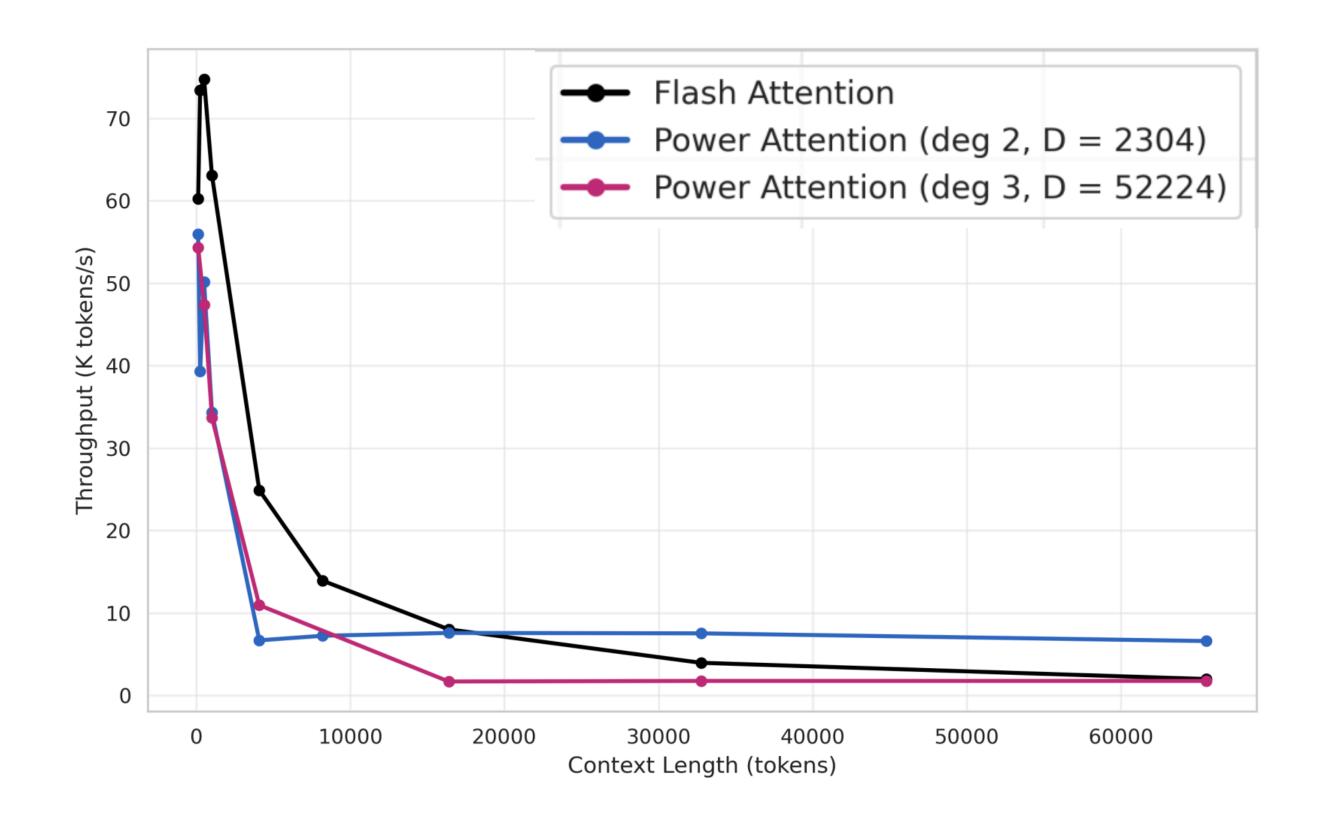
(b) ICL after 3e8 TeraFLOPs.

Trend holds at scale (1.5B parameters, 32k context)



Hardware-aware kernels available open-source: <a href="https://github.com/m-a-n-i-f-e-s-t/power-attention">https://github.com/m-a-n-i-f-e-s-t/power-attention</a>





FLA pull request coming soon!





# The San Francisco Compute Company

for supporting our work



# contact: jacob@manifestai.com

https://github.com/m-a-n-i-f-e-s-t/power-attention

